异物侵入铁路限界对铁路系统可靠性造成了极大的威胁。为达到高分类准确率及低模型内存占用率兼备的目的,针对既有技术方法中分类效果、泛化性能较差以及耗时久、模型占用空间大等问题,本文提供了一种快速训练算法,采用网络迁移压缩同时进行的方式,提出基于特征图L1或L2范数的递归式裁剪准则剔除冗余卷积核以压缩网络。对于单个相机新场景的目标分类任务,只需使用在混合场景数据上得到的最优分类网络模型通过压缩和微调训练便可以实现不同场景铁路异物分类的快速训练。实验表明,在基于铁路场景数据库的测试中,该算法可以将原始VGG16模型的参数消耗内存压缩1 020倍,在不同的单个相机场景测试样本库上压缩后网络的分类误差最低为0.34%。
1