共模辐射是由于接地电路中存在电压降(如下图),某些部位具有高电位的共模电压,当外接电缆与这些部位连接时,就会在共模电压激励下产生共模电流,成为辐射电场的天线。这多数是由于接地系统中存在电压降所造成的。共模辐射通常决定了产品的辐射性能。
2025-12-16 16:06:20 336KB
1
内容概要:本文详细介绍了利用COMSOL软件建立的辐射制冷模型,重点探讨了8-13μm波长范围内混凝土表面的温度分布及其辐射冷却性能。模型通过设置不同的光谱带和发射率来模拟不同条件下的辐射冷却效果,特别是对比了黑色表面和具有辐射冷却特性的表面在太阳辐射下的温度变化。文中还讨论了如何优化模型参数,如调整天空辐射率公式以适应不同气象条件,以及如何通过后处理命令检查视角因子矩阵确保模型准确性。最终揭示了辐射制冷在晴朗天空下的高效性和自然界的昼夜温差机制。 适合人群:从事建筑节能、材料科学、热物理学等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要理解和应用辐射制冷技术的研究项目,旨在提高建筑物表面的散热效率,降低能耗。具体应用场景包括建筑设计、新型建筑材料的研发等。 其他说明:文中提供的MATLAB代码片段有助于读者更好地理解和复现实验结果,同时也指出了模型中存在的潜在问题及改进方法。
2025-12-14 00:17:06 250KB COMSOL
1
内容概要:本文详细介绍了使用Comsol Multiphysics仿真软件建立激光烧蚀打凹坑模型的方法及其应用。该模型涵盖多个物理场的耦合分析,包括热流、辐射传热、传质(湿空气,浓度)、流体动力学、压电材料、电磁效应、结构力学以及声学频域等方面。通过对这些物理现象的仿真,可以深入理解激光烧蚀的机理,优化加工工艺并提高产品质量。文章还讨论了流固耦合和电磁热力耦合仿真的重要性,强调了这些仿真技术在未来工业制造和材料加工领域的潜力。 适合人群:从事激光加工、材料科学、仿真建模的研究人员和技术人员。 使用场景及目标:适用于希望深入了解激光烧蚀过程中的多物理场耦合现象,优化激光烧蚀工艺,提升加工质量和效率的专业人士。目标是通过仿真分析,掌握激光烧蚀的关键技术和理论,推动相关领域的技术创新和发展。 其他说明:文中提供了详细的仿真步骤和方法论,帮助读者更好地理解和应用Comsol仿真工具进行复杂的多物理场耦合分析。
2025-12-01 10:07:13 375KB
1
在现代电子工程领域,电磁兼容性(EMC)和电磁干扰(EMI)是两个至关重要的概念。EMI指的是设备、传输线或系统对外部环境或同一系统内其他设备造成的不希望产生的电磁影响,而EMC则涉及设备、传输线或系统在存在电磁干扰的环境下能够正常运行的能力。本篇文章主要讨论了使用实时示波器进行电磁干扰(EMI)辐射干扰测试的方法、设置以及最佳实践,特别是针对汽车电子控制单元(ECU)的测试。 测试EMI干扰首先需要了解辐射干扰的概念。辐射干扰是指通过空间以电磁波形式传播的干扰,其传播途径不依赖于导体,因此,这种干扰可以通过空气传播到接收设备。常见的辐射干扰源包括手机、蓝牙耳机、卫星广播、AM/FM广播、无线网络、雷达等。为了确保电子设备,如汽车ECU,能够在这样的环境下稳健工作,需要进行严格的EMI辐射干扰测试。 辐射抗扰室是一个用于EMI测试的理想环境,它是一个完全密封的传导空间,可以完全控制空间中产生的电磁场的频率、方向、波长。这种完全控制的环境能够确保电子设备在测试过程中只受到预定电磁场的影响,而不会受到外部环境的干扰。此外,由于电磁波无法离开抗扰室,测试工程师和其他测量设备可以在不受强电磁波伤害的情况下进行工作。 典型的器件级抗干扰测试设置包括被测的电子控制单元(ECU)、电线束、仿真器(包含实际或等效电子负载)、外设(代表ECU接口)、发送和接收天线(用于产生高场强的电磁波),以及模式调谐器(用于改变空间的几何尺寸以创造所需的电磁场效果)。ECU在预设模式下运行并暴露在电磁干扰场中,通过监控ECU的响应来验证其是否超出允许的容限。 为了确定汽车ECU是否满足EMI标准,通常需要参考国际或国家标准(例如ISO标准),这些标准定义了严格的测试方法和容限值。在测试过程中,通过逐渐调整干扰源的幅度,直至ECU功能出现偏离,来确定抗干扰阈值。ECU输出的数据(通过CAN总线、模拟传感器输出或PWM输出)将用来评估其是否正常工作。 由于ECU位于封闭空间内,测试人员和设备位于外部,因此需要利用光纤技术来传输ECU产生的信号到外部测试设备,因为光纤是非导体,可以避免电磁干扰。这种方法要求在干扰室边界处使用波导管来输出光信号,从而在干扰室保持完全封闭的同时,信号能够传递出来。 文章中提到的ISO/IEC61000-4-21和ISO11452-4是两个与EMI测试相关的国际标准,它们分别描述了辐射RF抗干扰测试和传导RF抗干扰测试的方法。辐射RF抗干扰测试可能在一个混响室中进行,使用机械模式调谐器产生指定频率范围和场强的均匀场。而传导RF抗干扰测试可能采用嵌位电流注入探头来诱导RF电流进入被测设备(DUT),从而产生足够强的场以影响非屏蔽设备的运作。 文章还提到,在实际操作中,为了确保信号的准确采集和分析,测试工程师需要使用数据采集设备和用户自定义的软件来评估ECU输出的信号是否满足特定的需求。这样的测试设置和方法能够帮助确保汽车ECU以及其他电子组件在复杂电磁环境中的可靠性,保证汽车的安全运行和电子系统的稳定性。
2025-11-25 08:45:16 98KB 课设毕设
1
在进行EMI辐射干扰测试的过程中,使用实时示波器是一种非常有效的方法。EMI,即电磁干扰,是指任何通过感应、辐射或电磁耦合的方式,在电子电路或系统中产生不需要的电压或电流的电磁现象。这种干扰可以降低电子设备的性能,严重时甚至会导致设备完全无法正常工作。 示波器是一种用于监测电信号的电子仪器,它可以显示信号随时间变化的图像。在EMI辐射干扰测试中,实时示波器通常用于观察并分析电子设备在受到电磁干扰时的反应和表现,以便评估和确保设备的电磁兼容性(EMC)。 辐射抗扰室是进行EMI测试的理想环境。它是一个完全密封的传导空间,可以完全控制空间中产生的电磁场的频率、方向和波长。在这个控制环境中,可以精确地模拟真实世界中的电磁干扰情况,如手机、蓝牙耳机、卫星广播等设备发射的电磁波。由于电磁场无法进入密闭的空间,因此,汽车部件在测试过程中能够接收精确且高度可控的电磁波,同时测量仪器和操作工程师也可免于受到干扰室内产生的强电磁波的伤害。 现代汽车含有大量的电子控制单元(ECU),这些部件必须符合严格的EMI干扰标准。在进行EMI测试时,通常会配置被测的ECU、电线束、仿真器以及一系列外设,这些外设模拟ECU的接口。发送和接收天线被用于产生高场强的电磁波,而模式调谐器则被置于干扰室内以改变空间的几何尺寸,从而创造测试中需要的电磁场效果。 在测试过程中,汽车ECU会在预设模式下运行,并暴露在电磁干扰场中。通过监控ECU的响应,可以验证其是否超出了允许的容限。通常,RF干扰测试需要确定器件抗干扰阈值,这通常通过逐渐调整干扰源的幅度直到ECU功能出现偏离的方法来确定。 ISO(国际标准化组织)规定了一系列的EMI测试标准,以确保汽车电子控制单元满足全球认可的严格要求。为了将ECU的输出数据传送到干扰室外部进行分析,由于传统线缆容易受到干扰室内部电磁波的影响,通常会使用光纤来传输信号。光纤是非导体,因此不会受到干扰室内电磁场的影响。 在典型的测试设置中,例如ISO/IEC61000-4-21标准描述的辐射RF抗干扰测试,混响室内的模式调谐器用于产生特定频率范围内的均匀场,场强可高达200V/m或600V/m。而ISO11452-4标准中的传导RF抗干扰测试,则使用嵌位电流注入探头来诱导RF电流进入设备,影响非屏蔽设备的运作。 在测试中,ECU的输出信号需要通过特殊设计的波导管,借助光纤发送器传送到测试设备。光纤发送器将ECU的输出信号转换为光信号,通过光纤传送。这样可以确保数据在封闭空间内被安全地传输到干扰室外部。 整个EMI测试流程中,工程师需要对测试结果进行详细分析,以确定电子设备是否能够在电磁干扰下保持正常工作。这通常涉及到分析ECU的输出端口数据,如CAN总线输出、模拟传感器输出或PWM输出信号。通过专业的数据采集设备和用户自定义的分析软件,工程师可以判断电子设备是否满足特定的EMI标准,以及是否需要进一步的优化或改进。
1
在当今的电子设备中,电磁干扰(EMI)成为一个不可忽视的问题。为了确保电子设备在电磁场环境中的稳定工作,必须进行EMI辐射干扰测试。本文将详细介绍使用实时示波器进行EMI辐射干扰测试的推荐方法、测试设备以及最佳实践。 我们需要了解电磁干扰室的作用。电磁干扰室是一个完全密封的传导空间,它能够完全控制空间中产生的电磁场的频率、方向和波长。在这样的测试环境中,可以精确地创建出可控的电磁波,模拟真实世界中的各种潜在干扰源,如手机、蓝牙耳机、卫星广播、AM/FM广播、无线网络、雷达等。这个环境对于测试汽车内部的电子元器件尤为重要,因为现代汽车包含大量的电子控制单元(ECU),它们需要在受到严格控制的EMI条件下进行测试,以满足汽车行业的EMI干扰标准。 在进行EMI测试时,通常会使用专门的器件级抗干扰测试设置,包括被测试的ECU、电线束、仿真器、外设接口、发送和接收天线以及模式调谐器。这些元素共同工作,在密闭的干扰室内产生高场强的电磁波。ECU在预定模式下运行,同时暴露在电磁干扰场中。通过监控ECU的响应,可以验证它是否在允许的容限内正常工作。如果ECU的功能出现偏离,就表示其抗干扰阈值已被超越。 测试过程中,被测的ECU必须符合国际标准组织(ISO)以及汽车制造商和ECU部件供应商之间的协议。为了检测ECU的输出是否满足要求,可以通过ECU的输出端口如CAN总线输出其工作状态,包括模拟传感器输出和PWM输出。 为了创建满足ISO/IEC61000-4-21标准描述的辐射RF抗干扰测试环境,可以使用一个混响室,其包含机械模式调谐器,可产生0.4~3GHz的测试频率范围和高达200V/m的场强。而ISO11452-4标准描述的传导RF抗干扰测试中,则使用嵌位电流注入探头以诱导RF电流进入设备,测试频率范围在1-400MHz,电平范围在几十到几百mA。 在进行这些测试时,会面临一个挑战,即如何将密闭空间中的数据传输到外部测试设备进行分析。因为传统的BNC或SMA线缆容易受到干扰室内部电磁波的影响,所以通常使用光纤进行信号传输。光纤不导电,且不会受到干扰室内的电磁场影响,因此是一种理想的传输介质。在干扰室边界处使用波导管输出光信号,使得干扰室在传递ECU信号时仍可保持密封。 为了进行数据采集,测试工程师通常会使用示波器来监测信号。而数据的采集和分析则需要借助用户自定义的软件进行。通过这种方式,可以确保汽车电子控制单元(ECU)在受到高强度的电磁辐射时,是否能够正常工作,并满足性能标准。 在进行EMI辐射干扰测试时,需要特别注意的是测试环境中的电磁场必须保持均匀,并且要确保测试设备不会对测试环境造成任何干扰。因此,测试工程师必须严格遵守相关标准和最佳实践,以确保测试结果的准确性和可靠性。此外,测试过程中应确保所有测试设备均得到适当的防护,防止受到测试环境中的强电磁波影响。
1
在外辐射源雷达领域中,ECA-BA(自适应滤波器)和NLMS(归一化最小均方)算法是实现直达波对消的关键技术。直达波对消是一种技术手段,用于在雷达信号处理中,通过算法滤除从发射天线直接到达接收天线的信号,以提高接收信号的质量和雷达系统的性能。在实际应用中,直达波会带来干扰,因为它掩盖了从目标反射回来的信号,所以必须通过相应的算法进行抑制。 ECA-BA是一种有效的自适应滤波算法,它通过调整滤波器的权重,使得滤波器的输出信号与干扰信号最大程度相似,但相位相反,从而实现对消。ECA-BA算法的优点在于它的稳定性和快速收敛特性,能够在非理想条件下实现有效的干扰抑制。 NLMS算法是一种基于最小均方误差准则的自适应算法,通过对权值的迭代调整,使得滤波器的输出信号与期望信号的均方误差达到最小。NLMS算法具有结构简单、易于实现的特点,并且对于变化的信号环境具有较好的跟踪能力。 在实际的雷达系统中,ECA-BA和NLMS算法通常被用于基带信号处理。基带信号处理是雷达信号处理的一个重要环节,它直接关系到雷达系统的性能。基带信号处理不仅包括直达波对消,还包括目标检测、信号识别、成像处理等。在这些处理过程中,ECA-BA和NLMS算法可以有效地提升信号的信噪比,提高雷达检测目标的准确性。 为了实现这些算法,通常需要使用专业的计算软件,如matlab。Matlab是一个高性能的数值计算和可视化软件,它提供了丰富的工具箱,尤其在信号处理领域有着广泛的应用。通过Matlab的开发环境,工程师和研究人员可以方便地实现ECA-BA和NLMS算法,对雷达信号进行模拟和处理。Matlab不仅支持快速的算法开发,而且可以进行直观的信号分析和结果展示,极大地提高了雷达信号处理的工作效率和质量。 随着雷达技术的发展,ECA-BA和NLMS算法也在不断地被优化和改进,以适应更加复杂的应用场景。例如,它们可以与其他先进的信号处理技术,如频谱分析、波束形成等结合起来,以实现更高效、更准确的雷达信号处理。未来,这些算法可能会集成到更高级的自适应信号处理系统中,为雷达技术的发展提供新的动力。
2025-10-18 14:26:23 157KB
1
该数据集名为“中国区域融合日照时数的高分辨率(10km)地表太阳辐射数据集(1983-2017)”,它是中国境内特定时间段内关于太阳辐射的重要气象数据集合。该数据集的核心内容是日照时数和地表太阳辐射强度,这两项指标对于气候研究、能源利用、环境科学以及农业等多个领域具有重大意义。 1. 日照时数:日照时数是指在特定时间段内,太阳光线直接照射到地面的累计时间。它是衡量一个地区阳光资源丰富程度的关键参数,对太阳能发电、农作物生长、人体健康以及旅游业等都有直接影响。此数据集提供了1983年至2017年这35年间,以10公里为分辨率的中国各地日照时数的详细记录,有助于研究人员分析中国各地的日照变化趋势及其对气候和环境的影响。 2. 地表太阳辐射:地表太阳辐射是指太阳光照射到地球表面的能量,它是地球能量平衡和气候变化的重要驱动力。地表太阳辐射数据对于理解气候系统、气候模型的构建和验证、以及太阳能资源评估至关重要。该数据集提供了高精度的地表太阳辐射数据,有助于科学家研究中国各地的辐射分布特点,进一步探究气候变化、大气污染等因素对其的影响。 3. 数据集结构与处理:该数据集可能包含多个文件,每个文件代表一年或一段时期的数据,以网格形式存储,每个网格点对应10公里×10公里的地理范围。数据可能以ASCII或NetCDF等格式存储,便于科学计算和地理信息系统(GIS)软件进行读取和分析。研究人员可以利用这些数据进行空间插值、时间序列分析、空间统计等复杂操作,揭示中国太阳辐射分布的时空变化规律。 4. 应用领域:这些数据在多个领域有着广泛的应用。例如,在气候学中,用于研究太阳辐射变化与气候变化的关系;在能源领域,可为太阳能发电站的选址和产能估算提供依据;在农业上,帮助优化作物种植模式和灌溉策略;在环境科学中,评估紫外线辐射对生态环境和人体健康的影响;在城市规划中,考虑建筑物的日照条件和节能设计等。 5. 数据获取与处理:由于数据的高分辨率和长期跨度,其收集、整合和处理工作必然复杂且耗时。这可能涉及到地面观测站的数据采集、卫星遥感数据的处理、误差校正以及不同数据源之间的融合算法。用户在使用此数据集时,需要了解数据的来源、精度、可能存在的不确定性,并根据实际需求进行必要的预处理和质量控制。 “中国区域融合日照时数的高分辨率(10km)地表太阳辐射数据集(1983-2017)”是一个宝贵的科研资源,对于深入理解和预测中国的气候模式、太阳能资源潜力以及环境变化等方面都具有重要的科学价值。
2025-09-29 22:32:38 128.42MB 数据集
1
Sentinel-2上的多光谱仪器(MSI)和Landsat 8上的操作性陆地成像仪(OLI)的近天底观测是在两次同时进行的天底过桥(SNO)期间收集的。 采集了撒哈拉沙漠中空间均匀区域分辨率为10、20和30 m的多光谱图像,用于直接比较MSI和OLI大气顶层(TOA)反射率。 本文介绍了Sentinel-2 MSI和Landsat 8 OLI传感器的8个对应光谱带的初始辐射交叉校准。 以经过良好校准的Landsat 8 OLI作为参考,比较表明,在频谱带调整因子Bi的3%之内,6个MSI谱带与OLI一致。 近红外(NIR)和卷云波段是例外。 它们产生的辐射差异分别约为8%和15%。 交叉校准结果表明,除了卷云带以外,这7个相应谱带的放射线差异与OLI一致,误差在1%或更高。 MSI和OLI对不同土地覆盖的观测结果之间的逐像素匹配表明。 这项初步研究表明,在进行植被监测时,MSI的红边带B8A可用来代替NIR带B08。
2025-09-21 16:35:50 1.09MB 陆地卫星8 辐射校准 同时观测最低点
1
% 此脚本根据 24 小时全球太阳辐射计算峰值太阳时% 数据以 .csv 格式保存。 % 数据从第 7 行开始以 2 列格式准备。 % 第 1 列是日期/时间,第 2 列是以 w/m^2 为单位的全球太阳辐射数据% 给定日期的 24 小时数据从 0 小时到 23 小时开始。 % 每小时采样数据有 24 个数据点或 1440 个数据点每分钟采样数据的百分比。 % 第 1 列和第 1 至 6 行是气象站信息。 % 请参阅示例 .csv 文件以了解如何准备数据。
2025-08-02 17:25:48 7KB matlab
1