介质棒天线(Dielectric Rod Antenna,简称DRA)是一种重要的端射天线类型,在无线通信系统和成像系统中有广泛应用。它的主要工作原理是利用介质棒末端的辐射孔径增大,从而获得较高的增益。通常,这种端射天线对前后比(Front-to-Back Ratio)有较高的要求,以确保能够有效抑制背向辐射。 然而,在封闭的矩形波导与介质棒之间的不连续性处,会形成背向波,沿着与端射方向相反的方向传播,从而产生背向辐射。同时,这种结构不连续性处也会产生泄漏波,这不仅是一种能量浪费,还对辐射模式产生不良影响。结构上的不连续性同样对阻抗匹配性能产生负面影响。 为了解决这个问题,已经提出了不同的设计,例如锥形馈电结构,但这种方式的空间占用较多,不利于集成和紧凑型应用。此外,有研究提出了在平面印刷的H平面喇叭天线与自由空间之间的阻抗匹配性能上,使用过渡结构来改进并增加前后比。这类过渡结构更容易集成在紧凑和平面结构中。 本文中提出的改进方法是通过引入一个过渡段来改善介质棒天线的辐射性能和波导与介质棒之间的阻抗匹配。研究结果显示,采用这种过渡结构能够显著减少背向辐射,并提高增益。此外,在宽带频率范围内,阻抗匹配性能也能得到改善。 本研究的摘要中指出,通过分解近场来分析介质棒天线不同部分的远场辐射特性,并通过引入过渡段来改善辐射性能。研究结果表明,过渡段的使用能够显著减少背向辐射,并提高增益。同时,阻抗匹配性能在宽带频率范围内得到了改善。这些发现对于介质棒天线的设计优化具有重要意义。 关键词包括介质棒天线、端射、阻抗匹配。 在介绍中,文章明确指出介质棒天线是一种重要的端射天线类型,它们广泛应用于无线通信系统和成像系统中。传统上,介质棒天线是通过矩形或圆形波导来馈电,并通过介质棒末端的渐缩设计来生成一个较大的终端辐射孔径,从而实现较高的增益。 本文提出的方法通过引入一个特殊的过渡段来优化介质棒天线的辐射特性,并改进波导与介质棒之间的阻抗匹配。这种过渡段的引入减少了背向辐射,提高了天线的增益,并且在较宽的频率范围内改进了阻抗匹配性能。这不仅有助于增强天线的辐射性能,也使得天线在实际应用中的兼容性和集成度得到提升。 在天线设计和优化领域,阻抗匹配是一个关键问题。良好的阻抗匹配可以减少能量反射,提高天线的辐射效率和信号传输质量。本文提出的改进措施对于理解介质棒天线的物理机制和工程实现提供了新的视角和方法,特别是在无线通信系统中对于提高天线性能和减少系统干扰方面具有重要价值。 总结而言,介质棒天线的辐射和阻抗性能的改善不仅关系到天线的增益和方向性,还直接影响到天线在无线通信系统中的应用效果。通过过渡段的优化设计,能够在不增加太多额外体积的情况下,有效解决结构不连续带来的问题,这对于提升天线性能和推广其在各种通信系统中的应用具有重要意义。同时,该研究也表明了结构设计在天线性能优化中的重要性,为未来的天线设计和优化工作提供了新的思路和方法。
2025-05-16 14:15:27 203KB 研究论文
1
在IT行业中,Python是一种广泛应用的开发语言,以其简洁的语法和强大的库支持而备受青睐。在本项目"基于Python的日照时数转太阳辐射计算"中,开发者利用Python的高效性和自动化特性,构建了一个能够快速处理日照时数数据并转换为太阳辐射值的程序。下面我们将深入探讨这一主题,讲解相关知识点。 太阳辐射是地球表面接收到的来自太阳的能量,通常以单位面积上的能量流(如焦耳/平方米)表示。日照时数则是衡量一个地区每天有多少时间阳光直射地面的时间长度,它是估算太阳辐射的重要参数之一。将日照时数转化为太阳辐射值对于气象学、能源研究以及太阳能发电等领域具有重要意义。 Python中的这个项目可能使用了诸如Pandas、Numpy等数据分析库来处理和计算数据。Pandas提供了DataFrame数据结构,方便对表格数据进行操作;Numpy则提供了高效的数值计算功能,可以用于批量计算太阳辐射。 计算太阳辐射通常涉及以下几个步骤: 1. 数据预处理:读取日照时数数据,这可能来自气象站的观测记录或者卫星遥感数据。数据预处理包括清洗数据,处理缺失值,统一格式等。 2. 计算辐射系数:根据地理位置、季节、大气状况等因素,可能需要预先计算出辐射系数。这可能涉及到一些物理公式,如林格曼系数或克劳修斯-克拉珀龙方程。 3. 转换计算:利用日照时数和辐射系数,通过特定的转换公式(例如,按照国际标准ISO 9060)计算每日或逐小时的太阳辐射值。 4. 结果分析:将计算结果整理成可视化图表,便于分析和展示。 在`Solar_rad_conversion.py`这个文件中,我们可以预期看到上述步骤的实现。可能包含导入相关库,定义函数来读取和处理数据,计算辐射值,以及生成图形化的结果输出。开发者可能还考虑了错误处理和用户友好的交互界面,使得非编程背景的使用者也能方便地使用这个工具。 这个项目展示了Python在科学计算和数据分析领域的强大能力。通过编写这样的程序,不仅可以提高数据处理效率,还能帮助研究人员和工程师更准确地评估和利用太阳能资源。同时,这也体现了Python语言在跨学科问题解决中的灵活性和实用性。
2025-05-03 12:35:11 897B python 开发语言
1
11.3 辐射传热 对辐射模型的介绍组织如下: 11.3.1 辐射传热简介 11.3.2 选择辐射模型 11.3.3 离散传播辐射模型 11.3.4 P-1 辐射模型 11.3.5 Rosseland 辐射模型 11.3.6 离散坐标辐射模型 11.3.7 表面辐射模型 11.3.8 燃烧过程的辐射 11.3.9 辐射模型使用概览 11.3.10 辐射模型的选择 11.3.11 离散传播模型的跟踪射线的定义 11.3.12 表面辐射模型中角系数的计算与数据读取 11.3.13 Defining the Angular Discretization for the DO Model 11.3.14 离散坐标辐射模型中的非灰体辐射 11.3.15 有关辐射性能的材料属性定义 11.3.16 辐射边界条件设定 11.3.17 辐射计算参数的设定 11.3.18 问题求解过程 11.3.19 Reporting and Displaying Radiation Quantities 辐射 11.3.20 Displaying Rays and Clusters for the DTRM 11.3.1 辐射传热简介 FLUENT 提供五种辐射模型,用户可以在其传热计算中使用这些模型(可以包括/不包括 辐射性介质): 离散传播辐射(DTRM)模型[ 30, 208] P-1 辐射模型[ 35, 210] Rosseland 辐射模型[ 210] 表面辐射(S2S)模型[ 210] 离散坐标辐射(DO)模型[ 37, 183] 是用上述的辐射模型,用户就可以在其计算中考虑壁面由于辐射而引起的加热/冷却以及流 体相的由辐射引起的热量源/汇。 辐射传热方程 对于具有吸收、发射、散射性质的介质,在位置 r r 、沿方向 s r 的辐射传播方程(RTE)为:
2025-04-11 15:13:23 22.81MB Fluent
1
在本文中,我们将介绍ILC上标准模型(SM)中三种光子产生的精度预测,包括完整的次先(NLO)电弱(EW)校正,高阶初始状态辐射(hoISR)贡献 和Beamstrahlung效应。 我们介绍了LO和NLO EW + h.o.ISR + beamstrahlung校正了当s≥200GeV时各种碰撞能量的总横截面以及s = 500 GeV的最终光子在ILC的运动学分布,并发现t
2024-07-05 10:38:36 400KB Open Access
1
我们提供并讨论了ILC上W +W-γ产生的精度预测,包括标准模型中的完整电弱(EW)一环校正和高阶初始状态辐射(ISR)贡献。 研究了前导阶(LO)和EW校正截面对碰撞能量的依赖性。 我们发现电子束校正显着抑制了LO截面,在阈值附近,超过O(α)的ISR效应很重要,但在高能区可忽略不计。 我们提供了LO和EW校正的横向矩的分布,以及最终W玻色子和光子的速度以及W对不变质量。 从各种运动学分布中,我们发现电子战校正很大程度上取决于最终状态相空间。 我们通过采用窄宽度近似来研究最终W-玻色子对的轻子衰变,并且发现最终产生的光子和轻子可以很好地彼此分离。
2024-07-05 09:06:14 686KB Open Access
1
生物超弱光子辐射光谱检测系统,樊琳琳,,为了解决生物超弱光子辐射强度极弱,光谱检测困难,目前未有成熟仪器的问题,设计了一类把激发光源、电子快门、滤光片转盘和光探
2024-07-04 09:20:16 294KB 首发论文
1
非结构化网格中辐射传热的数值计算,张敏,John C. Chai,用基元有限体积法和非结构化网格求解吸收/散射介质空间的辐射传热问题。空间离散采用三角形非结构化网格,方向角离散采用四边形�
2024-07-01 22:36:30 328KB 首发论文
1
行业文档-设计装置-电磁辐射探测笔.zip
2024-05-27 08:59:42 118KB
辐射测量仪电路概述: 1、功能:测试电脑,电视和各种办公自动化设备的电磁波辐射 并且有自动关机功能,延时关机时间为3分钟 2、测试范围:在5HZ-5000MHZ频率范围内 灵敏度:≤1uw/平方cm精度:≤ |1db | 3、参照标准:Hj/T10.2-1996(辐射环境管理导则电磁辐射监测仪器和方法)
2024-05-27 08:49:01 3.4MB 电路方案
1
我们表明,为了获得对离子-离子碰撞中带电粒子的横向矩分布的成功描述,必须包含一个热发射项。 发射的温度Tth与饱和度成正比,Tth = 1.8Qs /2π。 提出了在彩色玻璃冷凝物/饱和方法中计算横向矩谱的形式,其中可以看到该过程的两个阶段:彩色玻璃冷凝物的产生和胶子射流的强子化。 我们的计算基于以下观察结果:即使对于较小的pT,偶极子尺寸积分的主要贡献也来自饱和动量附近的运动区域,理论上我们知道散射幅度。 强子化模型中应包括非扰动校正。 该模型结合了有效质量为meff2 =2Qsμsoft的胶子射流的衰减,其中μsoft表示软标度,在所有横向动量值上均具有碎裂功能。 我们使用Kharzeev-Levin-Nardi模型,该模型提供了一种简单的方法来估计不同中心度类别的横截面。 将本文的结果与质子-质子散射的横向分布进行比较,我们看到了两个主要区别。 首先,根据所产生的彩色玻璃冷凝物的更高的部分密度,需要更大的热辐射项贡献。 第二,即使不使用热辐射项而更改强子化的模型,我们也无法描述pT谱。 因此,我们推测热辐射项的存在与约束模型无关。
2024-04-08 05:21:43 881KB Open Access
1