深度学习在人脸识别的研究和应用中取得一定成效,但因计算量大且耗时,不适用于小型嵌入式设备。基于融合梯度特征的轻量级卷积神经网络SqueezeNet提取人脸特征,既能保证该网络模型适用于内存相对小的嵌入式设备,又能保证获得的人脸特征对不同光照更具鲁棒性。实验结果表明,将8×8分块图像中提取的一阶梯度特征,与轻量级卷积神经网络提取的全局特征相融合的人脸识别算法,在LFW数据集中识别率可达97.28%,较传统轻量级卷积神经网络的人脸识别方法,识别率提高了4.36%。
2023-03-11 10:51:41 3.41MB 图像处理 嵌入式设 轻量级卷 一阶梯度
1
随着全球数据量的激增,集中式云计算无法提供低时延、高效率的视频监控服务。基于此,提出分布式边缘计算模型,在边缘端直接处理视频数据,减少网络的传输压力,缓解中央云服务器的计算负担,降低视频监控系统的处理时延。结合联邦学习算法,采用轻量级神经网络,分场景训练模型,并将其部署于计算能力受限的边缘设备上。实验结果表明,对比通用神经网络模型,所提方法检测准确度提高18%,模型训练时间有效减少。
1
轻量级神经网络构建,包括Mobile net,ShuffleNet,EffNet ,二值神经网络。
2021-12-16 10:09:14 9.54MB 轻量级神经网络
1