### 微波网络中的参数矩阵定义、推导及其转换 #### 一、Z矩阵(阻抗矩阵) 在微波工程领域,二端口网络是非常重要的组成部分。为了方便分析和计算,引入了不同的参数矩阵来描述这些网络的行为。首先介绍的是**Z矩阵**。 **定义:** Z矩阵用于描述端口电压与端口电流之间的关系。对于一个二端口网络,假设其两个端口的电压分别为\(U_1\)和\(U_2\),对应的电流分别为\(I_1\)和\(I_2\),则可以定义Z矩阵如下: \[ \begin{align*} U_1 &= Z_{11}I_1 + Z_{12}I_2 \\ U_2 &= Z_{21}I_1 + Z_{22}I_2 \end{align*} \] 或者用矩阵形式表示为: \[ \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**:\(Z_{12} = Z_{21}\) - **对于对称网络**:\(Z_{11} = Z_{22}\) - **对于无耗网络**:每个元素都可以表示为纯虚数,即\(Z_{ij} = jX_{ij}\),其中\(X_{ij}\)为实数。 **归一化阻抗矩阵**: 为了进一步简化计算,通常会定义归一化的电压和电流,以及相应的归一化阻抗矩阵。设归一化电压和电流为\(u\)和\(i\),则它们与未归一化的电压和电流之间的关系为: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 其中\(Z_0\)为参考阻抗。由此,我们可以得到归一化的Z矩阵为: \[ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \] 这里的\(z_{ij}\)是归一化后的阻抗矩阵元素。 #### 二、Y矩阵(导纳矩阵) **定义:** Y矩阵是用来描述端口电流与端口电压之间的关系的。对于二端口网络,Y矩阵定义为: \[ \begin{align*} I_1 &= Y_{11}U_1 + Y_{12}U_2 \\ I_2 &= Y_{21}U_1 + Y_{22}U_2 \end{align*} \] 或用矩阵形式表示为: \[ \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**:\(Y_{12} = Y_{21}\) - **对于对称网络**:\(Y_{11} = Y_{22}\) - **对于无耗网络**:每个元素都是纯虚数,即\(Y_{ij} = jB_{ij}\),其中\(B_{ij}\)为实数。 **归一化导纳矩阵**: 同样地,可以定义归一化的电压和电流,并据此定义归一化的导纳矩阵。设归一化电压和电流为\(u\)和\(i\),则有: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 归一化的Y矩阵为: \[ \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \] 这里的\(y_{ij}\)是归一化后的导纳矩阵元素。 #### 三、A矩阵(散射参数矩阵) A矩阵主要用于描述网络内部的信号传输情况,尤其是信号在不同端口间的传输关系。它通过定义网络输入和输出端口的电压电流比来描述网络特性。A矩阵的定义如下: \[ \begin{align*} \begin{bmatrix} U_1' \\ I_1' \end{bmatrix} &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix} \end{align*} \] 其中\(U_1'\)和\(I_1'\)分别表示网络输入端口的电压和电流,\(U_2\)和\(-I_2\)分别表示网络输出端口的电压和负电流。 **特殊性质:** - **对于互易网络**:\(A_{12} = -A_{21}\) #### 四、S矩阵(散射矩阵) S矩阵是微波工程中最常用的参数之一,用来描述二端口网络的散射特性。它定义了网络输入端口和输出端口之间反射和透射的比率。S矩阵的定义如下: \[ \begin{align*} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} &= \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \end{align*} \] 其中\(a_i\)和\(b_i\)分别表示入射波和反射波的幅度。 **特殊性质:** - **对于互易网络**:\(S_{12} = S_{21}\) #### 五、T矩阵(传输参数矩阵) T矩阵,也称为传输参数矩阵,用于描述信号在二端口网络内部的传输特性。它可以直观地表示信号从一个端口到另一个端口的传输情况。T矩阵定义如下: \[ \begin{align*} \begin{bmatrix} U_2 \\ I_2 \end{bmatrix} &= \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ I_1 \end{bmatrix} \end{align*} \] **特殊性质:** - **对于互易网络**:\(T_{11}T_{22} - T_{12}T_{21} = 1\) ### 参数矩阵之间的转换 不同参数矩阵之间可以通过特定的数学变换进行转换,以便于根据实际应用场景选择最适合的参数矩阵进行分析和设计。以下是一些基本的转换公式: - **Z到Y**: \[ \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}^{-1} \] - **Y到Z**: \[ \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}^{-1} \] - **Z到S**: \[ \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z_{11}-Z_0}{Z_{11}+Z_0} & \frac{2Z_{12}}{Z_{11}+Z_{22}+Z_0} \\ \frac{2Z_{21}}{Z_{11}+Z_{22}+Z_0} & \frac{Z_{22}-Z_0}{Z_{22}+Z_0} \end{bmatrix} \] - **S到Z**: \[ \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = Z_0 \begin{bmatrix} \frac{1+S_{11}}{1-S_{11}} & \frac{2S_{12}}{1-S_{11}S_{22}} \\ \frac{2S_{21}}{1-S_{11}S_{22}} & \frac{1+S_{22}}{1-S_{22}} \end{bmatrix} \] 通过上述定义和转换,可以灵活地在不同参数矩阵间进行切换,从而更好地理解微波网络的工作原理,并为其设计提供理论支持。
2025-06-21 22:06:06 713KB 微波工程
1
西门子数控报警号与DB2地址转换公式+机床数据MD1451x与DB20地址转换,excel,自动转换
1
雷达探测极坐标系(AER)与地球等经纬度坐标系(GEO) 图1中,O为地心,OD为地球半径R, A为雷达架设点,AD为雷达架设高度h,雷达探测水平面为AF,B为雷达探测的任意一点。 雷达探测极坐标系的三个参数为r,θ,δ。 雷达探测拟直角坐标系的三个参数为X,Y,H,其中H为距地面的高度。 记雷达探测任意一点B,在雷达探测极坐标系下表示为B(r,θ,δ),在雷达探测拟直角坐标系下表示为B(X,Y,H)。 下面推导由B(r,θ,δ)到B(X,Y,H)的转换公式。 根据图1中的直角三角形∆OBC可知
2022-08-16 11:11:01 444KB 文档资料
1
坐标系转换问题在工作中经常会遇到,例如,在陆地和海洋的地震勘探中,当今最便捷 的定位方法是GPS 卫星定位,可是GPS 定位数据是WGS84 坐标系上的数据,而各国采用 的往往是早先建立的国家坐标系,为了避免出现矛盾,就需要将WGS84 定位数据转换到国 家坐标系上。
2022-07-24 00:49:39 256KB 坐标系转换
1
北京54坐标系与西安80坐标系坐标转换公式与算法.doc
2022-05-26 09:10:44 72KB 算法 文档资料
ITS-90 常用热电偶 B、E、J、K、N、R、S、T 常用热电偶温度电势对应表 常用热电偶温度电势转换公式
2022-04-26 20:54:13 264KB 热电偶 BEJKNRST ITS-90 温度电势对应表
1
坐标系转换公式:各种地理坐标相互转换,gps定位数据转换为84坐标,84与直角坐标、大地坐标与地心坐标等等十种转变公式
2021-11-11 15:23:35 256KB 坐标系 转换
1
雷达坐标与GPS和其他坐标系的转换公式。 1. Preface 2 2. Calculation of Geodetic Coordinates from Radar Spherical Coordinates 3 2.1. What do we know! 3 2.2. Calculation of Geocentric Coordinates 5 2.3. Transformations of Geocentric to Geodetic Coordinates 5 2.4. A new radar position 6 3. Calculation of Geodetic Coordinates from Stereographic Coordinates 8 3.1. The MADAP track server 8 3.2. From Stereographic Coordinates to Geodetic Coordinates, method 1 9 3.2.1. From system Stereographic Coordinates to system Cartesian Coordinates 9 3.2.2. System Cartesian Coordinates to Geocentric Coordinates 10 3.2.3. A new origin 10 3.3. From Stereographic Coordinates to Geodetic Coordinates, method 2 11 3.3.1. Stereographic Coordinates to coordinates on a conformal sphere 11 3.3.2. Coordinates on a conformal sphere to Geodetic Coordinates 12 3.4. From Stereographic Coordinates to Geodetic Coordinates, method 3 12 3.4.1. Stereographic Coordinates to Geodetic Coordinates 12 3.4.2. Geodetic Coordinates to Stereographic Coordinates 13 3.5. The three methods 14
2021-11-02 09:35:01 64KB 雷达坐标 GPS 笛卡尔坐标系 经纬度
1
这个是一个国家地理的专业文档,里面是一些坐标系转换(ECEF重力转换)的常用系数,及重力的一些公式。 有需要的可以下载。 未来会撰文撰写一些文档来用这些公式计算。
2021-10-04 18:52:46 156KB GNSS INS IMU
1
tex2word可以将LaTeX源文件转换成word格式,转换公式的工具。
2021-09-04 12:32:08 447KB tex2word
1