Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-10 15:47:32 3.54MB matlab
1
基于深度学习的乒乓球目标检测与旋转球轨迹预测.pptx
2024-05-08 09:18:26 908KB
1
仿真了扩展卡尔曼滤波在轨迹预测中的应用,成功预测了匀速直线运动的3维轨迹并做了误差分析,如需相关定位,跟踪代码代做或相关毕设可联系xdmsj8,标注来意
2024-04-10 21:13:49 2KB matlab kalman滤波
1
基于LightGBM进行海洋轨迹预测.zip
2023-11-06 15:27:52 151.91MB 机器学习
1
pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下: image 第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下: image 第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: image 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: image 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm
【预测模型】卡尔曼滤波运动轨迹预测【含Matlab源码 590期】.zip
2023-03-13 12:49:18 94KB
1
LaneGCN源码分享
2023-02-14 16:42:13 18.67MB 轨迹预测 gcn 源码
1
基于MPC预测算法的轨迹预测模块,MATLAB仿真,已测试有效
2023-01-03 12:26:14 129KB MPC Matlab
1
自己稍微整理了常用的轨迹预测几个数据集的介绍
2023-01-01 23:15:50 4.54MB 数据集整理
1
基于 LSTM 的船舶轨迹预测,训练数据
2022-12-07 09:28:40 9.3MB LSTM 训练数据
1