随着智能交通系统中的应用,航空图像车辆检测已成为一项关键工程技术,具有学术研究意义。 提出了一种基于YOLO深度学习算法的航空图像车辆检测方法。 该方法通过处理三个公共航空图像数据集来整合适合YOLO训练的航空图像数据集。 实验表明,该训练模型在未知的航拍图像上具有良好的性能,特别是对于小物体,旋转物体以及紧凑而密集的物体,同时满足实时性要求。
2023-05-04 12:46:26 630KB 车辆检测 航空影像 YOLO 威代
1
提出了一种基于卷积神经网络的前方车辆检测方法。首先,根据车底阴影特征,运用基于边缘增强的路面检测算法以及车底阴影自适应分割算法来分割并形成车底候选区域,以解决路面灰度分布不均及光照条件变化问题;其次,运用针对道路交通环境的卷积神经网络结 构,建立图像样本库进行网络训练;在此基础上,采用基于卷积神经网络识别的方法以验证并剔除被误检测为车底阴影的候选区域,进而确定真正的车辆目标;最后,修改网络为三分类识别,以验证本文方法的强扩展性的优势。实验结果表明:本文提出的车辆检测方法能够很好地区分车底阴影和非车底阴影干扰,有效地提高车辆检测的准确率和可靠性,降低误检率。
2022-05-21 15:53:45 949KB 卷积神经网络
1
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:车辆检测方法_matlab_车辆识别算法程序.zip 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-25 09:05:41 14KB matlab 算法 车辆检测 车辆识别
车辆检测方法
2022-04-19 09:07:36 2KB 车辆检测方法
以车辆自动驾驶系统中的道路环境感知技术为研究对象,开发了一套前方车辆检测系统,该系统利用安装在车辆上的相机和毫米波雷达实时获取前方道路信息,通过各传感器的数据接收、处理以及融合算法,实现及时、准确、可靠、具有环境适应性的前方车辆检测。
1
行业资料-交通装置-一种基于连续型Adaboost视频车辆检测方法.zip
行业分类-物理装置-一种基于单目视觉和激光雷达融合的车辆检测方法.zip
行业分类-物理装置-基于非对称卷积的具有粒度级多尺度特性的车辆检测方法.zip
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。
2021-07-11 22:56:50 1.21MB 论文研究
1
针对车辆检测任务,设计更高效、精确的网络模型是行业研究的热点,深层网络模型具有比浅层网络模型更好的特征提取能力,但构建深层网络模型时将导致梯度消失、模型过拟合等问题,应用残差网络结构可以缓解此类问题。基于YOLO算法,改进残差网络结构,加深网络层数,设计了一种含有68个卷积层的卷积神经网络模型,同时对输入图像进行预处理,保证目标在图像上不变形失真,最后在自定义的车辆数据集上对模型进行训练与测试,并将实验结果与YOLOV3模型进行对比,实验表明,本文设计的模型检测精准度(AP)达90.63%,较YOLOV3提高了4.6%。
2021-07-07 16:17:05 715KB 网络车辆检测
1