道路车辆检测图像数据集_含21种各种不同的车辆类型+3004张高质量真实场景道路车辆图片+已做YOLO格式标注_可用于深度学习算法训练
2024-11-21 15:24:43 116.38MB 数据集 目标检测 车辆检测
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路上的车辆进行目标检测任务,包含了1000张真实监控场景下的高质量图像,涵盖了各种复杂的驾驶环境,例如快速行驶、慢速行驶、密集行驶以及夜间低光条件下行驶的车辆数据。这些丰富的场景不仅有助于提升模型在复杂环境中的鲁棒性,还能够为交通道路监控等实际项目提供强有力的数据支撑。 #### 数据集类别与应用场景 数据集中将车辆标注为四个类别:“car”、“van”、“bus”和“others”,这样的分类方式能够满足大多数交通监控场景下的需求。此外,该数据集还可以作为其他监控场景中通用车辆检测数据集的补充,进一步增强模型对不同车型的识别能力。 #### 标注工具与格式 该数据集采用了`labelimg`标注软件进行标注,这是一款开源且易于使用的图形界面标注工具,它支持多种标注格式,包括VOC(xml)、COCO(json)和YOLO(txt)。这些格式都是目前主流的目标检测算法(如YOLO系列)所支持的标准数据格式,可以直接用于模型训练而无需额外的数据转换处理,大大提高了研究效率。 #### 训练示例与支持平台 数据集还附带了YOLOv8和YOLOv5的一键训练脚本,这些脚本支持GPU(GPUs)、CPU以及Mac(M芯片)等多种硬件平台,极大地扩展了模型训练的灵活性。无论是使用高性能GPU加速训练过程,还是在没有GPU的情况下使用CPU进行训练,亦或是使用最新的Apple M系列芯片设备,用户都能够轻松上手并获得满意的训练效果。此外,博主还提供了自己的训练结果日志供学习者参考,帮助理解模型的表现情况,并进行相应的调整优化。 #### 数据集获取 为了方便下载,该数据集被托管在百度网盘上,具体下载方式如下: - 链接: [https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw](https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw) - 提取码: 6666 #### 数据集使用建议 1. **预处理阶段**:在使用数据集之前,建议先对数据进行预处理,包括但不限于数据清洗、尺寸统一、灰度图转RGB图等操作,以确保输入数据的质量。 2. **模型选择**:根据具体的任务需求和硬件条件,选择合适的模型版本进行训练。例如,在资源有限的情况下,可以选择YOLOv5n等轻量级模型;而在追求更高精度的应用场景中,则可以考虑使用YOLOv8等更复杂的模型。 3. **训练技巧**:在模型训练过程中,可以尝试不同的超参数设置、数据增强策略以及早停法等技术,来提高模型性能。 4. **评估与调优**:训练完成后,通过准确率、召回率等指标评估模型效果,并根据实际情况进行调整优化。 这个城市道路行驶车辆检测数据集不仅提供了丰富的标注数据,还配备了完善的训练脚本和支持文档,对于想要从事交通监控领域或车辆检测研究的人来说,是一个非常宝贵的学习资源。
2024-11-21 14:50:49 4.33MB YOLO COCO
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路中行驶的各类车辆,旨在为交通监控、智能驾驶等应用场景提供丰富的图像资源与标注信息。数据集共包含10,000张高质量的真实监控场景图像,并覆盖了多种行车情况,例如快速行驶、慢速行驶、密集行驶以及夜间低光环境下的车辆。这些场景的多样性和复杂性对于提升模型的泛化能力和鲁棒性至关重要。 #### 类别划分 数据集中的车辆被细分为四个类别:“car”(轿车)、“van”(厢式车)、“bus”(公交车)以及“others”(其他)。这种细致的分类有助于更准确地识别不同类型的车辆,从而更好地服务于实际应用需求。例如,在交通管理中,区分不同类型车辆的能力对于制定合理的交通策略至关重要。 #### 标注工具与格式 所有图像均使用`labelimg`这一强大的标注工具进行了精细标注,确保了数据的质量。此外,为了方便用户使用,提供了三种常见的目标检测数据集格式:VOC(xml)、COCO(json)和YOLO(txt)。这三种格式几乎涵盖了目前主流的目标检测框架所需的数据格式,大大降低了数据预处理的工作量。 - **VOC**:这是一种广泛使用的数据集格式,主要用于Pascal VOC挑战赛。它使用XML文件来存储每个图像的元数据,包括对象的位置信息。 - **COCO**:Common Objects in Context(COCO)格式是一种更现代且功能更全面的数据集格式,适用于多个计算机视觉任务,如物体检测、分割等。COCO格式使用JSON文件来组织数据。 - **YOLO**:You Only Look Once(YOLO)格式非常适合快速训练和部署,因为它简单直观,仅使用文本文件来表示边界框坐标和类别的索引。 #### 训练支持 数据集还附带了针对YOLOv8和YOLOv5的一键训练脚本,这极大地简化了训练过程。支持多平台(GPU、CPU和Mac M芯片),使得不同硬件条件下的用户都能轻松进行模型训练。此外,还提供了训练日志供参考,这对于理解训练过程中的问题和优化模型非常有帮助。 #### 数据集划分脚本 数据集还包含了一个用于划分数据集的脚本。这个脚本可以将数据集自动划分为训练集、验证集和测试集,这是机器学习项目中非常重要的一步。通过合理划分数据集,可以有效地评估模型性能并避免过拟合。 #### 应用场景 此数据集特别适合应用于以下几种场景: - **交通监控**:监测道路上的车辆流量,识别异常行为(如闯红灯、逆行等)。 - **智能驾驶辅助系统**:帮助自动驾驶汽车识别周围的车辆类型和位置,提高驾驶安全性。 - **城市管理**:统计特定时间段内的车辆类型分布,为城市规划提供数据支持。 #### 获取方式 数据集可通过百度网盘链接下载:[链接](https://pan.baidu.com/s/1CJ-3SK3heWHzlVHb_PMKHA),提取码为6666。需要注意的是,由于数据集资源超过1GB,因此提供的下载文件为PDF格式,其中包含了数据集的基本情况介绍及获取完整数据集的方式。 该数据集以其丰富的场景覆盖、高质量的图像和标注、灵活的数据格式以及便捷的训练支持,为从事车辆检测相关研究或应用的开发者提供了一套非常有价值的数据资源。
2024-11-21 14:48:48 4.33MB 车辆检测 YOLO COCO
1
### ISO 16750-4 2023 道路车辆 电气电子设备的环境条件和试验 第4部分:气候负荷 #### 概述 ISO 16750-4 2023 标准是国际标准化组织(ISO)发布的一个关于道路车辆电气电子设备在特定气候条件下的环境要求与测试方法的标准。该标准旨在为汽车制造商及其供应商提供一套统一的测试流程和评估准则,确保车载电气电子设备能够在各种气候条件下正常工作。 #### 标准范围 本标准规定了道路车辆电气电子设备在不同气候条件下的环境适应性要求以及相应的测试方法。它涵盖了车辆运行过程中可能遇到的各种气候条件,包括但不限于高温、低温、湿度变化等,并对这些条件下的设备性能提出了具体要求。 #### 规范性引用文件 为了确保标准的一致性和有效性,ISO 16750-4 2023 引用了多个其他标准文档作为其规范性的基础。这些文件提供了必要的背景信息和技术细节,对于理解和实施本标准至关重要。 #### 术语和定义 标准中包含了特定的专业术语及其定义,以便于相关人员准确理解并遵循各项条款。例如,“电气电子设备”是指安装在道路车辆上用于控制、监测或辅助驾驶等功能的所有电气及电子组件。 #### 运行温度范围 ISO 16750-4 2023 对电气电子设备在不同气候条件下的运行温度范围进行了详细规定。这一部分主要关注设备在极端温度条件下(如极热或极冷)的工作性能,以及如何通过适当的测试来验证这些性能指标。 ### 详细知识点分析 #### 1. 标准的目标与适用范围 ISO 16750-4 2023 主要针对道路车辆中的电气电子设备,包括但不限于电机控制器、电驱动总成等关键部件。该标准适用于所有类型的汽车,无论是传统燃油车还是新能源电动汽车。 #### 2. 气候条件分类 根据不同的气候特征,标准将气候条件分为几个类别: - **高温环境**:模拟车辆在炎热夏季或沙漠地区的使用情况。 - **低温环境**:考虑冬季严寒条件下的设备表现。 - **温湿度循环**:模拟四季变化或昼夜温差大的环境特点。 - **湿热环境**:评估在高湿度条件下的设备性能。 #### 3. 测试方法概述 为了验证电气电子设备在各种气候条件下的可靠性,ISO 16750-4 2023 提供了一系列详细的测试方法: - **温度测试**:模拟极端温度条件下的设备响应,包括耐热性和耐寒性测试。 - **湿度测试**:评估设备在高湿度条件下的耐久性和功能稳定性。 - **温度循环测试**:模拟快速温度变化对设备的影响,以确保其能够在快速变换的环境中稳定运行。 - **盐雾测试**:适用于评估设备在海洋性气候或腐蚀环境下长期工作的能力。 #### 4. 特定应用领域 该标准特别强调了电机控制器和电驱动总成等关键部件的要求。这些部件通常位于车辆动力系统的核心位置,对整个系统的性能有着决定性的影响。因此,确保它们能够在各种极端气候条件下保持可靠性和性能至关重要。 #### 5. 实施建议 为了帮助制造商更好地理解和应用该标准,ISO 16750-4 2023 提供了一些实用的建议: - **材料选择**:推荐使用耐高温、耐低温的材料,以提高设备的整体性能。 - **设计改进**:鼓励采用创新的设计方案来减少设备受到外部环境因素的影响。 - **质量控制**:强调加强生产过程中的质量控制措施,确保每一台出厂设备都符合规定的标准。 #### 结论 ISO 16750-4 2023 是一个全面而细致的指南,旨在确保道路车辆中的电气电子设备能够在各种气候条件下可靠地运行。通过对标准的深入研究和有效实施,制造商可以显著提高产品的质量和市场竞争力。此外,该标准还为未来的技术发展指明了方向,促进了汽车行业整体技术水平的进步。
2024-11-16 16:52:28 1.19MB 电机控制器 电驱动总成
1
文件名:Skill Drive - Game Template 2020 LTS v1.3.3.unitypackage Skill Drive - Game Template 是一款 Unity 插件模板,专门用于构建以驾驶和技能操作为核心的游戏。它提供了完整的游戏框架和基础功能,帮助开发者快速搭建具有复杂车辆操控和技能系统的游戏。这款模板特别适合开发竞速类、动作类或以载具为中心的游戏项目。以下是其主要功能和特点: 1. 车辆驾驶系统 Skill Drive 提供了预设的车辆驾驶系统,支持各种类型的载具,从赛车到越野车,甚至是摩托车或其他自定义车辆。驾驶系统具有流畅的物理模拟,包含加速、刹车、漂移等操作,确保真实的驾驶体验。 车辆物理引擎:基于真实物理模拟,提供逼真的车辆操控,支持高速转向、碰撞反馈等。 车辆自定义:可以根据游戏需求自定义车辆性能,如速度、加速度、操控感等。 2. 技能系统 模板中的技能系统允许为车辆或角色添加特殊能力或技能。技能可以通过玩家输入触发,适合设计各种竞速技巧、战斗能力或辅助道具。 主动技能:如加速冲刺、瞬间转向、跳跃等技能,能为玩家提供策略性。。
2024-10-23 12:55:11 44.79MB Unity插件
1
《普瑞车辆管理系统 v20.1 网络版:智能车辆管理的新里程碑》 在信息化日益发达的今天,企业对于车辆管理的需求也日益增长,以提高效率、降低成本。普瑞车辆管理系统 v20.1 网络版正是为满足这一需求而设计的专业解决方案。这款软件涵盖了车辆管理的多个重要环节,不仅提供了单机、局域网及云服务器三种模式,还支持通过浏览器和手机APP进行用车申请,实现了全方位、多平台的车辆信息管理。 一、驾驶员档案管理 普瑞车辆管理系统 v20.1 网络版对驾驶员档案进行了精细化管理。它允许用户录入驾驶员的基本信息,如姓名、驾照类型、驾龄等,并记录驾驶员的工作状态和驾驶记录,包括违章情况、事故记录等,从而为企业的安全管理和驾驶员绩效评估提供依据。同时,系统还可以根据驾驶员的驾驶习惯和能力进行分类,帮助优化车辆分配。 二、车辆档案管理 车辆档案管理是该系统的核心功能之一。用户可以详细录入每辆车的信息,包括车型、车牌号、购置日期、保养记录、维修历史等。系统能够自动提醒用户进行定期保养,防止因忽视维护导致的意外故障。此外,车辆使用状态的实时更新,有助于调度人员准确掌握车辆动态,避免资源浪费。 三、油卡管理 普瑞车辆管理系统 v20.1 网络版的油卡管理功能,使得燃油成本控制更为精确。系统可以记录每一笔加油记录,包括加油量、时间和地点,便于分析车辆油耗情况,找出节能降耗的策略。同时,油卡余额的实时监控,可以避免因油卡资金不足导致的运营中断。 四、网络版与异地联网 普瑞车辆管理系统 v20.1 的网络版设计,使得数据共享和协同工作变得轻松。无论是局域网内的部门间协作,还是跨越地域的远程管理,都能实现数据同步,确保信息的及时性和准确性。此外,通过浏览器和手机APP,员工可以在任何时间、任何地点提交用车申请,审批流程自动化,大大提升了工作效率。 五、云服务器版与移动应用 云服务器版提供了异地联网的能力,使得数据存储更加安全,且不受地理位置限制。同时,手机APP的应用,使得管理者和驾驶员能随时随地查看车辆状态、审批用车申请,实现移动办公,让车辆管理更加灵活便捷。 普瑞车辆管理系统 v20.1 网络版以其全面的功能和强大的网络支持,成为了现代企业车辆管理的理想工具。无论是驾驶员管理、车辆管理,还是油卡管理,都体现了智能化、高效化的理念,为企业带来了显著的管理效益提升。
2024-10-18 14:00:52 10.44MB 车辆管理 v20.1
1
当前城市车辆定位与导航系统面临的挑战: 1. 开放式定位系统缺陷:一旦网络或卫星信号发生问题,定位功能则无法实现。 2. 特定区域定位问题:在楼宇密集地区或地下停车场等区域,上述系统往往难以实现准确的定位。 3. 空间立体定位精度不足:虽然GPS和A-GPS可以达到10m以内的定位精度,但这种精度不足以区分同一地点上下两层车道的位置差异。 4. 国际定位系统依赖:GPS卫星体系完全由美国控制,存在在特殊情况下限制精度和覆盖范围的风险;北斗系统虽由我国研发,但在依赖通信网络方面也存在不可靠性问题。 RFID技术简介及工作原理: RFID(无线射频识别)技术是一种通过无线电波实现非接触式自动识别目标对象的技术。RFID系统主要由三个部分组成:识读器(Reader)、电子标签(E-tag)和天线部分(Antenna)。其工作原理是当电子标签进入识读器的电磁场范围时,天线部分会接收电子标签中存储的数据信息,并通过识读器对信息进行处理和识别。 RFID技术相较于GPS的优越性: RFID技术与GPS相比具有以下优势: 1. 不依赖于全球卫星导航系统,因此不受信号中断的影响。 2. 能够在复杂的环境下,例如室内和地下停车场等,实现准确的定位。 3. 可以实现极高的定位精度,足以满足区分不同楼层和车道位置差异的需求。 4. 不受国家政治因素的限制,具有较高的自主性和安全性。 智能交通系统(ITS)概念及其在交通定位中的应用: 智能交通系统(ITS)是将多种先进信息技术综合应用于交通系统,以实现更加准确、实时和高效的交通管理和控制。其目标是实现人、车、路之间的和谐统一。在智能交通系统的发展中,车辆的准确定位与导航是其重要方向,对于公交、紧急救护等众多行业都是必要的需求。 文章中提到的RFID城市交通定位系统新方案的实施可行性、具体前期应用领域等问题,虽然没有详细内容,但可以预测以下几个方向: 1. 实施可行性可能涉及到技术成熟度、成本、易用性等多方面因素。 2. 前期应用领域可能包括公共交通系统、城市物流配送、应急救援车辆导航等,这些都是RFID技术能大幅提升效率和安全性的领域。 RFID城市车辆定位与导航系统在解决当前城市交通定位系统存在的诸多问题上具有显著的优势。然而,RFID技术在实际应用中是否能完全取代GPS等传统定位技术,还需要考虑技术成本、设备兼容性、用户接受度等多种实际因素。随着技术的不断发展和改进,RFID技术有望在未来的城市交通管理系统中发挥更大的作用。
2024-10-11 21:03:27 432KB
1
相关博文请查看:https://blog.csdn.net/weixin_44044411/article/details/107969423,本视频为博主上传的,此博文的配套仿真视频
2024-09-19 13:59:55 3.97MB MPC 无人驾驶
1
JTT 1076-2016 道路运输车辆卫星定位系统 车载视频终端技术要求.pdf JTT 1077-2016 道路运输车辆卫星定位系统 视频平台技术要求.pdf JTT 1078-2016 道路运输车辆卫星定位系统 视频通讯协议.pdf
2024-09-09 11:09:00 21.81MB 1076 1077
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-05 16:10:28 1.6MB matlab
1