Python基于pytorch深度学习的车型识别系统源码+使用说明
训练模型主要分为五个模块:启动器、自定义数据加载器、网络模型、学习率/损失率调整以及训练可视化。
启动器是项目的入口,通过对启动器参数的设置,可以进行很多灵活的启动方式,下图为部分启动器参数设置。
任何一个深度学习的模型训练都是离不开数据集的,根据多种多样的数据集,我们应该使用一个方式将数据集用一种通用的结构返回,方便网络模型的加载处理。
这里使用了残差网络Resnet-34,代码中还提供了Resnet-18、Resnet-50、Resnet-101以及Resnet-152。残差结构是通过一个快捷连接,极大的减少了参数数量,降低了内存使用。
1