人脸图像补全作为图像补全技术的一种特殊应用,在被遮挡人脸的识别、人脸修复等问题上有不可替代的作用。现有的人脸补全算法只针对补全图像的真实性,而未考虑其补全后的身份一致性。针对这一问题,设计了一种基于改进的生成式对抗网络的人脸补全算法,通过引入SN-GAN算法,提高了模型训练的稳定性,同时利用人脸识别模型对生成图像加入了身份一致性约束,经过实验证明,所提方法能够在生成高真实性图像时有效保持补全图像的身份一致。
1