动态路由
项目描述:
为了测试动态网络上各种路由算法的性能,我们在网络上创建了一个数据包路由仿真,该仿真在一系列时间步长上进行离散更新。
在整个仿真过程中,随机选择边缘以消失并在每个时间步进行恢复。 另外,在整个情节中,边缘权重以正弦形式波动。 在每个情节的开始,网络上都会生成许多数据包(网络负载),每个数据包都有一个随机的起始节点和目标节点。 每次传送数据包时,都会在一些时间步长后初始化一个新数据包。 一旦生成了一定数量的数据包并在网络上传递,该情节就结束了。 然后计算平均分组传送时间和各种网络拥塞度量。
该模拟要求路由器根据一种路由算法为每个数据包确定路径。 特别是对于这个项目,我们探索通过Dijkstra算法的最短路径,通过Floyd-Warshall算法的最短路径,通过各种奖励函数的Q学习,以及Deep Q Learning。
要求:
网络X
FFmpeg(用于动画制作)
2021-03-08 09:50:58
42KB
Python
1