2024年第九届全国密码技术竞赛中获得特等奖的作品《面向海量大数据的跨模态密文检索系统》是一套先进的技术方案,旨在解决海量大数据环境下的密文检索问题。在这项技术中,跨模态检索是指能够在不同数据模态之间进行检索的能力,而密文检索则涉及在数据被加密后进行有效检索的挑战。 跨模态密文检索系统的设计需要解决的是数据的安全性问题,因为大数据往往涉及敏感信息。因此,系统必须采用高效的加密技术,保证数据在存储和传输过程中的安全。同时,为了保证检索的效率,加密技术不能简单地损害数据的检索性能。这就要求设计一种既能保护数据隐私,又能支持高效检索的加密算法。 在实现这一目标的过程中,可能会涉及到多种先进的密码学方法和技术,如同态加密、安全多方计算、可搜索加密等。同态加密技术允许对加密数据直接进行计算,而不必解密,这对于保护数据隐私至关重要。安全多方计算则允许多个参与方共同参与计算,同时保证各自输入的隐私性。可搜索加密则允许用户在不解密的情况下,对加密数据进行搜索。 此外,跨模态密文检索系统还需要强大的索引技术。在数据被加密之后,传统的索引方法可能不再适用。因此,必须设计能够处理加密数据的索引结构,这可能涉及到特殊的索引构建算法和数据结构,如加密后的倒排索引、加密树结构等。 系统还要考虑到海量数据的存储和管理问题。在大数据环境下,数据的规模往往非常庞大,这就需要高效的存储方案,如分布式文件系统、云存储等。同时,还要有有效的数据管理策略,以便于数据的快速检索和访问。 在系统的设计中,还应当考虑到用户体验。如何在保证安全性和检索效率的同时,为用户提供直观易用的检索界面和功能,也是设计者需要重点考虑的问题。 跨模态密文检索系统是一个集成了多种先进密码学技术、索引技术、数据存储和管理策略以及用户体验设计的复杂系统。它的开发和应用不仅可以提升大数据环境下的信息安全水平,还可以为相关领域提供强有力的技术支持,推动信息检索技术的发展。 另外,从文件名称"Cross-Model-Encrypted-Search-System-main"可以看出,该压缩包内可能包含系统的主要文件和代码库。这些文件可能包括系统设计文档、源代码、测试案例、用户手册和运行指南等,这些是实现跨模态密文检索系统功能的重要组件。 这套系统将为大数据环境下的信息安全和检索效率提供全新的解决方案,具有重要的理论和实际应用价值。随着技术的不断进步和应用领域的扩大,这套系统有望在更多领域得到广泛应用,成为保护数据隐私和实现高效数据检索的重要工具。
2025-10-09 11:08:41 189.06MB
1
跨模态投影匹配和分类损失应用于图像-文本匹配中的深度学习方法 本文提出了跨模态投影匹配(CMPM)损失和跨模态投影分类(CMPC)损失,用于学习判别图像-文本嵌入。CMPM损失试图最小化投影相容性分布和归一化匹配分布之间的KL散度,以便增加不匹配样本之间的方差和匹配样本之间的关联。CMPC损失尝试将来自一个模态的特征的向量投影分类到来自另一模态的匹配特征上,以增强每个类别的特征紧凑性。 深度学习在图像-文本匹配中的应用非常重要,因为它在各种应用中非常重要,例如双向图像和文本检索、自然语言对象检索、图像字幕和视觉问题回答。现有的深度学习方法要么尝试在共享潜在空间中学习图像和文本的联合嵌入,要么构建相似性学习网络来计算图像-文本对的匹配分数。 联合嵌入学习框架通常采用两分支架构,其中一个分支提取图像特征,另一个分支对文本表示进行编码,然后根据设计的目标函数学习判别式交叉模态嵌入。最常用的函数包括典型相关分析(CCA)和双向排名损失。 双向排名损失产生更好的稳定性和性能,并且越来越广泛地用于交叉模态匹配。然而,它遭受采样有用的三胞胎和选择适当的利润率在实际应用中。最近的一些工作探索了具有身份级别标记的更有效的跨模态匹配算法。 CMPM损失和CMPC损失引入了跨模态特征投影操作,用于学习区分性的图像-文本嵌入。CMPM损失函数不需要选择特定的三元组或调整裕度参数,并且在各种批量大小下具有很大的稳定性。 大量的实验和分析表明,该方法的优越性,有效地学习判别图像-文本嵌入。相关工作包括联合嵌入学习和成对相似性学习,联合嵌入学习的目的是找到一个联合的潜在空间,在这个潜在空间下,图像和文本的嵌入可以直接进行比较。 深度典型相关分析(DCCA)旨在学习使用深度网络的两个数据视图的非线性变换,使得所得表示高度线性相关,而DCCA的主要警告是每个小批量中不稳定的协方差估计带来的特征值问题。双向排名损失扩展了三重损失,这需要匹配样本之间的距离比不匹配样本之间的距离小一个余量,以用于图像到文本和文本到图像排名。
2025-07-15 16:37:07 801KB 深度学习 关键词匹配
1
简单实现跨模态检索(pycharm运行)
2024-05-08 09:10:06 6.99MB 信息检索
1
基于非线性跨模态哈希的视频检索,丁斌,程祥,在以图搜视频的视频检索任务中,现有基于哈希的视频检索算法均采用线性映射的方式将视频信息映射为哈希码。然而线性映射对于复杂
2024-02-24 22:23:37 679KB 首发论文
1
matlab alexnet图像识别代码可见热力人员重新识别(交叉方式人员Re-ID) AAAI 2018和IJCAI 2018中的演示代码。 AAAI 18论文的框架:两阶段框架(特征学习+公制学习) IJCAI 18论文的框架:端到端学习 1.准备数据集。 可以通过提交版权表格从中下载RegDB数据集。 (其名称为“东国基于身体的人的识别数据库(DBPerson-Recog-DB1)”。) 2. AAAI中的两流CNN网络功能学习(TONE) 所有代码都在用Python编写的文件夹“ TONE /”中。 该演示代码已在Python 2.7和Tensorflow v0.11上进行了测试。 一种。 准备数据集和训练/测试列表,如TONE/dataset.py所示。 列表格式为image_path label 。 b。 下载预训练的alexnet模型并修改TONE/model.py 。 C。 运行python TONE/tone_train.py训练网络。 d。 运行python TONE/tone_eval.py评估学习的功能并提取功能以供以后的度量学习。 (您还可以修改脚本以获取不同
2023-03-02 23:12:45 191KB 系统开源
1
跨模态检索指的是:根据一个模态的查询样本,在另一个模态上搜索相关的样本。 例如,给出一张图像,去检索包含相同对象或主题的文本描述;或是给出一段文本,去检索带有其描述对象的图片。 但由于各模态之间具有不同的数据表现形式,所以不同模态的样本间并不能直接进行相似性比较。 以Pascal Sentence数据集为实力,用pytorch写一个demo 文章链接:https://blog.csdn.net/zzpl139/article/details/128372023
1
分享看过的跨模态行人重识别方向的最新论文 感兴趣的可以看看呦
2022-09-27 21:05:33 268KB 行人重识别
1
跨模态注意力引导卷积网络用于多模态心脏分割
2022-05-22 20:34:52 1.24MB 研究论文
1
这个部分包含了19篇cross-module ReID 和1篇人脸识别的paper及阅读笔记,从2017-2020目前能找到的所有的跨模态RdID 文章,方便大家使用
2022-03-20 14:38:20 53.15MB 人工智能 跨模态 人物重识别 cross-module
1
%这个Matlab脚本用于计算和绘制跨模态保证标准%(MAC)基于给定的模式形状数据百分比:2020年11月30日 %注意:madeShape是一个具有行(DOF数)和列(模式数)的矩阵%示例:load modeShape1.mat %加载模式%MAC = crossMAC(modeShape1,modeShape2);
2022-03-11 14:43:56 2KB matlab
1