一个基于 MPC 的自动驾驶汽车轨迹跟踪 资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2025-03-28 20:07:50 1003KB MPC算法
1
基于MPC的轨迹跟踪控制联合仿真:Simulink与Carsim参数设置详解及效果展示,基于MPC的模型预测轨迹跟踪控制联合仿真simulink模型+carsim参数设置 效果如图 可选模型说明文件和操作说明 ,基于MPC的模型预测; 轨迹跟踪控制; 联合仿真; simulink模型; carsim参数设置; 效果图; 可选模型说明文件; 操作说明,基于MPC的轨迹跟踪控制:Simulink+Carsim联合仿真效果图解析及模型操作指南 在深入探讨基于模型预测控制(Model Predictive Control, MPC)的轨迹跟踪控制联合仿真技术时,我们有必要详细解析Simulink与Carsim这两种仿真软件在参数设置上的细节及其联合仿真效果。Simulink是一个广泛应用于多领域动态系统建模和仿真的软件,其强大的模块化设计能力和丰富的工具箱为复杂系统的分析和设计提供了便利。而Carsim则是专门针对汽车动力学性能仿真的一款软件,可以模拟车辆在各种工况下的动态响应和行为。 本文将详细探讨如何在Simulink与Carsim中进行参数设置,以便实现高效的轨迹跟踪控制联合仿真。我们需要理解MPC的基本原理。MPC是一种先进的控制策略,它通过在每个控制周期内优化未来一段时间内的控制输入,来满足性能指标并保证系统的约束得到满足。MPC在轨迹跟踪中的应用,尤其是在非线性和约束条件较为复杂的车辆控制系统中,展现出了显著的优势。 在Simulink中,MPC控制器的参数设置主要包括模型预测范围、控制范围、控制变量和状态变量的定义,以及预测模型的建立等。此外,控制器的优化算法选择、目标函数和约束条件的设定也是确保轨迹跟踪性能的关键。在Carsim中,我们需要设置车辆的物理参数、环境参数、路面条件等,以确保仿真的真实性和准确性。在两者的联合仿真中,需要确保Simulink中的MPC控制器能够接收Carsim提供的实时车辆状态数据,并进行正确的控制决策输出。 文档中提到的模型说明文件和操作说明可能包括了对仿真模型的详细介绍,以及如何在Simulink和Carsim中进行操作的具体步骤。这些文件对初学者来说尤为宝贵,因为它们可以减少学习曲线,加快仿真模型的搭建速度。联合仿真效果如图所示,意味着通过恰当的参数设置,仿真模型能够在Carsim中实现预定的轨迹跟踪任务,并且可以通过Simulink直观地展示出仿真结果。 联合仿真不仅能够验证MPC算法在车辆轨迹跟踪控制中的有效性,还能够提供一个直观的平台来分析和调整控制策略,以满足不同工况下的性能要求。同时,联合仿真的结果也可以用来指导实际的车辆控制系统的设计和优化,为智能交通系统的开发提供理论基础和实践参考。 在当前智能交通和自动驾驶技术的快速发展背景下,基于MPC的轨迹跟踪控制联合仿真技术显得尤为重要。它不仅有助于解决传统控制策略难以应对的复杂工况问题,还能在保证安全的前提下提高车辆的行驶性能和舒适性。未来,随着算法的不断完善和计算能力的提升,MPC在轨迹跟踪控制领域的应用将更加广泛,并将进一步推动智能交通技术的进步。
2025-03-28 20:02:15 94KB 数据仓库
1
永磁直驱风力发电系统自抗扰控制与最大功率跟踪技术研究:机侧变流器自抗扰控制与仿真,网侧变流器PI控制及风速模型探讨,自抗扰控制,永磁直驱风力发电系统,永磁同步电机,最大功率跟踪,机侧变流器,网侧变流器 机侧变流器转速外环:采用自抗扰控制,LADRC,代码+simiulink仿真 网侧变流器采用PI控制 五种风速的风速模型?自抗扰控制的风力发电系统模型,两种模型 ,自抗扰控制; 永磁直驱风力发电系统; 永磁同步电机; 最大功率跟踪; 机侧变流器; 网侧变流器; LADRC; PI控制; 风速模型; 自抗扰控制风力发电系统模型。,自抗扰控制的永磁直驱风力发电系统研究:最大功率跟踪与双层变流器策略
2025-03-28 01:21:32 202KB
1
在现代机器人技术与自动化系统中,路径跟踪的精确性和效率一直是研究的重点。随着对自动驾驶和机器人导航技术需求的增加,控制算法的性能在很大程度上决定了这些系统的稳定性和可靠性。在这一背景下,基于模型预测控制(MPC)的路径跟踪策略因其独特的优点而备受关注。MPC能够处理复杂的动态约束,并针对未来的预测轨迹进行优化,从而实现对系统状态的精确控制。 本文将探讨一种特定的MPC实现,即在ROS(Robot Operating System,机器人操作系统)内进行的仿真小车控制。ROS是一个用于机器人应用开发的灵活框架,它提供了大量的工具和库来帮助软件开发。通过在ROS环境下使用MPC算法,开发者可以更加方便地进行控制算法的测试和验证。 Ubuntu 20.04作为一个开源的Linux操作系统,是ROS Noetic支持的平台。ROS Noetic是ROS系列的第十个版本,也是最新版本,它为机器人系统的开发提供了强大的工具集。在进行MPC控制算法的ROS仿真之前,首先需要在Ubuntu 20.04上安装ROS Noetic。这一步骤是必不可少的,因为ROS Noetic中包含了实现MPC所需的包和功能。 安装完ROS Noetic之后,下一步是安装MPC控制算法所需的所有ROS依赖项。这些依赖项通常包括用于系统建模、优化求解和状态估计的各种库和工具。通过确保所有必需的依赖项都已正确安装,可以确保MPC算法能够顺利运行。 在ROS中使用MPC算法进行路径跟踪,可以带来诸多优势。MPC是一种先进的控制策略,它能够考虑到未来的时间范围,提前对潜在的问题进行优化,比如避免障碍物或减少能耗。MPC能够处理复杂的动态系统约束,这对于机器人在现实世界中导航是非常重要的。此外,MPC具有良好的适应性和鲁棒性,即便在复杂的动态环境中,它也能够维持稳定的跟踪性能。 MPC控制算法的实现和应用通常需要深入理解系统的动态特性,包括动力学建模、状态估计以及优化问题的求解。在ROS的框架下,开发者可以利用现有的工具和库来简化这些过程,使他们能够更加专注于算法设计和性能优化。 对于需要进行仿真的小车,使用MPC进行控制可以实现更加精确的路径跟踪。这对于教育和研究领域尤其有价值,因为它允许学生和研究人员在不受真实物理环境限制的情况下,自由地测试和学习控制算法。 博客配套资源包的提供使得这一技术的学习和应用变得更加便捷。下载资源包后,用户可以在自己的计算机上快速搭建起仿真环境,并立即开始进行实验和开发。这种即下载即安装的方式,大大降低了学习曲线,使得更多的人能够轻松接触并使用MPC控制算法。 MPC在ROS内实现的仿真小车控制,为路径跟踪提供了一种高效的解决方案。它不仅具备处理复杂动态约束和预测未来状态的能力,而且通过在ROS平台的集成,使得开发和测试过程更加高效。随着自动驾驶和机器人技术的不断进步,MPC控制算法在路径跟踪领域的应用前景将变得更加广阔。
2025-03-27 11:15:35 11.26MB 路径跟踪 mpc 控制算法
1
为您提供ActionView问题需求跟踪工具下载,ActionView是一个基于laravel+reactjs实现的面向中小企业的、开源的、类Jira的问题需求跟踪工具。特点:1、支持用户创建项目,项目不仅可引用全局配置方案,也可自定义本地方案,实现了全局配置方案和本地配置方案的完美结合。2、各项目不仅可引用系统默认工作流,同时可自定义自己的工作流,工作流的每一步可进行精细控制,确保正确的人在正确的时间执行正确的操作。3、支持敏捷开发的看板视
1
需求跟踪矩阵(Requirements Traceability Matrix,RTM)是软件开发过程中的一个重要工具,它用于确保项目的每个需求都被正确地实现并可追溯。RTM是一种表格形式的文档,它建立了需求与设计、编码、测试用例以及项目其他相关活动之间的链接。在本篇介绍中,我们将深入探讨RTM的概念、重要性、创建方法以及使用示例。 一、需求跟踪矩阵(RTM)概述 需求跟踪矩阵是一种结构化的文档,其中包含了项目的需求及其在整个开发过程中的状态。这个矩阵列出了项目的所有需求,然后追踪这些需求在不同阶段的对应项,如设计规格、源代码、测试用例等。通过RTM,项目团队可以清晰地看到每个需求的进展,确保所有关键任务都与原始需求相符合,避免遗漏或冗余。 二、RTM的重要性 1. **质量保证**:RTM有助于验证每个需求是否已完全实现,防止错误或遗漏,从而提高软件质量。 2. **变更管理**:当需求发生变化时,RTM可以帮助识别和管理这些变更对项目其他部分的影响。 3. **合规性**:在某些行业,如医疗设备和航空航天,RTM是满足法规要求的重要工具。 4. **风险管理**:RTM可以提前发现潜在问题,降低项目风险。 5. **审计**:RTM为外部审计提供了一种清晰、透明的方式,以证明项目遵循了既定的需求。 三、创建RTM的步骤 1. **确定需求**:收集并记录项目的全部需求,包括功能性和非功能性需求。 2. **构建矩阵**:创建一个表格,列出所有需求,作为矩阵的行。列通常包含设计、实现、测试用例等阶段。 3. **关联需求**:在矩阵中,将每个需求与相应的设计元素、代码模块、测试用例等进行关联。 4. **持续更新**:随着项目的进展,不断更新矩阵以反映需求的状态和完成情况。 5. **审查和验证**:定期审查RTM,确保所有关联都是准确和完整的。 四、RTM的示例和模板 提供的压缩包文件中包含了一些关于如何创建RTM的示例和模板: 1. **softwaretestinghelp.com-How to Create Requirements Traceability Matrix RTM Example and Sample Template.pdf**:这份资料可能提供了一种创建RTM的方法,以及一个实际的模板,帮助读者理解RTM的结构和内容。 2. **softwaretestingmaterial.com-What is Requirements Traceability Matrix RTM amp How To Create It.pdf**:这份文档可能详细解释了RTM的概念,并提供了创建RTM的具体步骤。 3. **guru99.com-What is Requirements Traceability Matrix RTM Example Template.pdf**:类似地,这份资料也可能包含RTM的定义,同时提供了一个实例模板供参考。 4. **Requirements-Traceability-matrix.xlsx**:这是一个Excel文件,可能是预填充的需求跟踪矩阵模板,可以直接使用或根据项目需求进行调整。 需求跟踪矩阵(RTM)是软件开发过程中不可或缺的一部分,它确保项目始终围绕着最初的需求进行,并且能够有效管理变更,保证项目的质量和合规性。通过使用RTM,项目团队可以更有效地控制进度,减少错误,提升客户满意度。
2024-11-15 14:14:14 1.02MB
1
标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单点或多点驾驶员模型”是模拟驾驶员行为的不同方法。单点模型通常简化驾驶员为一个点,考虑其对车辆输入的影响,而多点模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1
线性参变(LPV)+鲁棒模型预测控制(RMPC)+路径跟踪(PTC),目前能实现20-25m s的变速单移线和10-15m s的变速双移线。 考虑速度和侧偏刚度变化,基于二自由度模型和LMI设计鲁棒模型预测控制器。 上层考虑状态约束,输入约束进行控制率在线求解,计算得到前轮转角和附加横摆力矩,下层通过最优化算法求出四轮转矩。 算法采用simulink的sfunction进行搭建,和carsim8.02进行联合仿真,包含出图m文件和简单的说明文档。 本套文件内含一个主要的mdl文件,一个出图m文件,一个说明文档以及carsim8.02的cpar文件。 MATLAB2020a以上版本和carsim8.02版本
2024-10-23 21:46:50 403KB
1
在车辆动力学与控制领域,基于Carsim的预瞄PID路径跟踪模型是一种广泛采用的技术,用于确保车辆在复杂路况下能够准确、稳定地追踪预定的行驶路径。Carsim(CarSim)是一款强大的汽车动态模拟软件,它能模拟各种车辆动力学行为,并提供了丰富的工具来分析和优化车辆控制系统。 我们要理解PID控制器。PID(比例-积分-微分)控制器是自动控制理论中最基础且应用最广泛的控制器类型。它通过结合比例项(P)、积分项(I)和微分项(D)来调整控制系统的输出,以减小系统误差并实现快速响应。在路径跟踪中,PID控制器负责调整车辆的转向角,使得车辆尽可能接近目标路径。 预瞄技术是PID控制器的一种增强,它在标准PID的基础上引入了对未来目标点的预测。在车辆行驶过程中,预瞄算法会计算出车辆即将到达的点,并根据该点的位置调整PID参数,以提前应对可能的偏差,从而提高路径跟踪的精度和稳定性。 在Carsim中,实现预瞄PID路径跟踪模型通常包括以下几个步骤: 1. **路径规划**:定义车辆需要遵循的路径,这可能包括直线、曲线、坡道等各种地形元素。路径可以由一系列离散的点表示,这些点连接成一条连续的参考路径。 2. **误差计算**:实时计算车辆当前位置与参考路径之间的偏差,包括横向误差(车辆中心线与路径的距离)和纵向误差(车辆沿路径的偏移)。 3. **PID控制器设计**:配置PID控制器的参数,如比例增益(Kp)、积分增益(Ki)和微分增益(Kd),以达到最佳的控制效果。在预瞄PID中,还需要考虑预瞄距离和预瞄时间,以便提前调整控制输入。 4. **预瞄处理**:预测车辆未来的位置,基于这个预测,提前计算PID输出,以减少响应时间和减小误差。 5. **车辆动态模拟**:在Carsim环境中模拟车辆的行为,包括车辆的动力学模型、轮胎模型等,以反映实际驾驶条件下的响应。 6. **反馈与调整**:根据模拟结果调整PID参数,可能需要反复迭代以获得最优性能。 7. **轨迹稳定跟踪**:通过不断调整车辆的转向角,使其能够持续稳定地跟踪预设路径,尤其在蛇形工况下,即连续的弯道,这种控制策略显得尤为重要。 通过以上步骤,基于Carsim的预瞄PID路径跟踪模型可以有效地帮助我们设计和验证汽车的路径跟踪控制策略,确保车辆在各种复杂的驾驶环境中能够安全、准确地行驶。而文件"PID_Path_Tracking"可能包含了实现这一模型的相关代码、配置文件或模拟结果,是深入理解与研究这一技术的重要资源。
2024-10-23 13:07:42 12.61MB carsim 路径跟踪
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-14 17:29:32 2.19MB matlab
1