内容概要:本文详细介绍并复现了2021年发表于Nature Communications的文章,利用全介质超表面技术实现了完美矢量涡旋光束和庞加莱球光束的生成。文中解释了完美矢量涡旋光束的特点,即其不受拓扑荷变化影响,保持稳定矢量特性和可控偏振变化。文章重点介绍了两种不同拓扑荷数的超表面模型,展示了不同阶次的完美涡旋光产生,涡旋图案半径基本不变。此外,提供了FDTD模型、设计脚本、Matlab计算代码及复现结果,涵盖从相位和透射率中挑选用于自旋解耦合的八个单元结构的代码,以及计算多种理论结构光场相位分布的脚本。 适合人群:对光学技术尤其是超表面技术和矢量涡旋光束感兴趣的科研人员和技术开发者。 使用场景及目标:适用于光学加密、光通信、光学操控和光学传感等领域,旨在帮助研究人员理解和掌握全介质超表面技术的具体实现方法和应用场景。 其他说明:本文不仅提供理论背景,还包括详细的实验步骤和代码,便于读者进行复现实验。
2025-10-21 14:08:22 6.3MB
1
"基于COMSOL模型的干热岩与超临界二氧化碳开采增强型地热系统模型研究:热流固耦合与高鲁棒性计算",COMSOL模型,地热模型,干热岩模型 超临界二氧化碳开采增强型地热系统地热模型 CO2-EGS,热流固耦合 模型收敛性好,可以根据自己的需求自由修改,计算速度快,鲁棒性好。 ,COMSOL模型; 地热模型; 干热岩模型; 超临界二氧化碳开采; 增强型地热系统; CO2-EGS; 热流固耦合; 模型收敛性好; 计算速度快; 鲁棒性好。,多尺度COMSOL地热及干热岩热流固耦合模型 在当前能源领域,地热能源作为一种清洁、可再生的自然资源,其开发和利用受到了广泛关注。尤其是随着增强型地热系统(Enhanced Geothermal Systems, EGS)技术的发展,人类对地热资源的开发能力得到了显著提高。而在众多EGS技术中,超临界二氧化碳(CO2)作为工作流体的CO2-EGS技术,以其高效热能转换和环保优势,成为了研究的热点。COMSOL Multiphysics是一款强大的多物理场模拟软件,它能够模拟热流固耦合等问题,为研究超临界二氧化碳开采干热岩地热能提供了重要的模拟工具。 本研究以COMSOL模型为基础,重点研究了干热岩与超临界二氧化碳相结合的增强型地热系统模型。在该系统中,超临界二氧化碳作为热交换介质,通过循环抽取地下的热能,并通过地面热交换设备转化为可用的热能或电能。研究中涉及了热流固耦合过程,即考虑了热能、流体流动和岩石应力变形的相互作用,这对于确保系统长期稳定运行至关重要。 研究成果表明,基于COMSOL模型的模拟计算具有良好的收敛性和高鲁棒性,这意味着模型能够快速而准确地响应不同工况的变化,并具有较强的容错能力。此外,模型的自由修改性使得研究人员可以根据实际需求调整参数和边界条件,从而获得更为精确的模拟结果。 探索地热能源模型与增强型地热系统的奇妙之旅涉及了对地热资源的分布、特性及开发技术的深入了解。模型地热模型与干热岩模型超临界二氧化碳开的研究,不仅涉及到地热资源的地质特性,还包括了对超临界二氧化碳流体特性的研究。这些研究工作为地热能源的高效开发提供了理论基础和技术支持。 在对地热能源模型与增强型地热系统的深入探索过程中,研究者们面临着多尺度问题的挑战。多尺度模型能够描述从宏观岩体尺度到微观裂隙尺度的不同物理过程,这对于准确模拟地热系统的复杂行为至关重要。因此,本研究中提到的多尺度COMSOL地热及干热岩热流固耦合模型能够为这一挑战提供解决方案,帮助研究者更好地理解地热系统的动态变化和响应。 通过这份研究,我们可以看到地热能源开发技术的无限可能性。科技领域对于地热能源模型和增强型地热系统的探究,不仅仅是对现有资源的开发,更是对未来能源科技的拓展。通过模型地热模型干热岩模型超临界二氧化碳的深入研究,我们能够更好地掌握地热资源的分布和特性,开发出更加高效和环境友好的地热能技术。 本研究通过COMSOL模型对干热岩与超临界二氧化碳相结合的增强型地热系统进行了深入探讨,涉及热流固耦合、多尺度模拟等关键技术问题。研究结果不仅加深了我们对地热能开发技术的理解,还为未来地热能源的高效和环保开发提供了重要的理论依据和技术支持。随着计算技术的不断进步和地热能源开发技术的持续创新,我们有理由相信地热能源将在未来的能源结构中占据更加重要的位置。
2025-10-21 11:44:25 1.37MB kind
1
sizeof指针和数组的长度 Sizeof与Strlen的区别 stack和heap的区别 大小端存储情况 strcut的指针p+0x200=? (long)p+0x200=? (long *)p+ox200=? 数组地址偏移算法 const用法 static作用 volatile作用 线程间通信的机制 在C语言中,`sizeof`和`strlen`是两个经常使用的操作符和函数,它们各自有不同的用途和特性。`sizeof`用于获取一个类型或者变量在内存中占据的字节数,而`strlen`则用于计算以空字符'\0'结尾的字符串的实际长度。 1. `sizeof`操作符: - `sizeof`返回的是一个表达式或类型的字节数。例如,对于一个整型变量`int n`,`sizeof(n)`会返回4(在32位系统中)。 - 对于数组,`sizeof`会返回整个数组的大小,即使数组作为函数参数传递,也不会退化为指针,因此`sizeof(str1)`将返回字符数组`str1`的总字节数,包括结束符'\0'。 - 对于指针,`sizeof`返回的是指针本身的大小,通常为4字节(32位系统)或8字节(64位系统),如`sizeof(p1)`。 - `sizeof`可以在编译时计算,因此它可以应用于类型,如`sizeof(int)`或未初始化的数组声明,如`sizeof(char[20])`。 2. `strlen`函数: - `strlen`是一个函数,需要一个以'\0'结尾的字符串作为参数,返回字符串的长度,不包括结束符'\0'。 - `strlen`在运行时计算字符串长度,因此`strlen(str1)`会返回5,表示不包括'\0'的字符个数。 - 与`sizeof`不同,`strlen`不能用于非字符串的数组或非字符类型的指针,因为它们不会自动添加'\0'。 3. 栈和堆的区别: - 栈(Stack):栈内存由编译器自动管理,用于存储函数参数、局部变量等。栈内存的分配和释放快速,但空间有限,通常只有几MB。 - 堆(Heap):堆内存由程序员手动管理,使用`malloc`、`calloc`、`realloc`和`free`等函数进行分配和释放。堆内存可以按需分配大块内存,但操作相对较慢,并且容易产生内存泄漏。 在面试中,对这些基本概念的理解是至关重要的,它们涵盖了C语言内存管理的基础知识。了解这些可以帮助开发者避免常见的编程错误,如栈溢出、内存泄漏和指针操作不当等问题。此外,面试中可能会涉及大小端存储问题,这关乎到数据在内存中的存储顺序,以及跨平台编程时的数据交换。`struct`的指针偏移涉及到结构体成员的内存布局,而`const`、`static`和`volatile`关键字则是C语言中用于控制变量特性的关键字,分别用于常量、内部链接和易变性。线程间通信的机制则涉及到多线程编程,可能包括信号量、管道、消息队列、共享内存等方式。理解这些知识点对于编写高效、可靠的多线程程序至关重要。
2025-10-19 23:45:15 122KB
1
这是一款CAD插件,适用于模具模架CAD制图辅助,可以实现自动标注,批量打印,一键提取侧视图等近百项功能,功能强大超乎您的想象 是飞诗模具,cad小帮手不可多得的平替软件,支持ACAD2010-2026 ,中望cad2025-2026。 ZG模具CAD插件是一款专业的辅助工具,针对模具模架CAD制图设计,其功能包含了多种实用特性。首当其冲的是自动标注功能,可以自动识别图纸中的关键尺寸并进行标注,极大提升了制图效率与准确性。此外,该插件还支持批量打印,用户可一次性完成多张图纸的打印工作,避免了逐一手动打印的繁琐,节省了宝贵时间。一键提取侧视图功能允许用户快速从三维模型中提取所需的侧视图,为设计师提供了极大的便利。不仅如此,ZG模具CAD插件还集成了其他近百项实用功能,包括但不限于自动切换输入法、智能尺寸标注、自定义模板等,这些功能协同作用,能够有效提高模具设计工作的质量和效率。 该插件兼容多种CAD软件版本,包括支持ACAD2010至ACAD2026版本以及中望CAD2025至中望CAD2026版本。这使得不同用户根据自己的使用习惯和软件环境,都可以无缝接入该插件,不受软件版本限制。兼容性是衡量一款插件是否值得投资的重要指标之一,ZG模具CAD插件在这方面的表现,确保了它能够在多种工作环境中稳定运行,从而保障了用户的投资价值。 考虑到模具设计工作的复杂性和精细性,ZG模具CAD插件的自动标注功能能够确保标注的一致性和精准度,为后续的模具生产加工提供了可靠的图纸依据。批量打印功能提高了图纸输出的效率,减轻了设计师的工作负担。一键提取侧视图等快捷功能,不仅加快了设计流程,也提高了工作效率。该插件的广泛功能,迎合了模具设计师在提高工作效率和确保设计质量上的双重需求。 在技术实现方面,ZG模具CAD插件想必采用了先进的算法和编程技术,以保证其功能的实现既稳定又高效。插件的智能化处理能力,不仅减少了设计师重复性的劳动,还提高了设计过程中的精确度和可靠性。这款插件的出现,无疑能够提高模具设计领域的整体工作效率,也是设计人员提升竞争力的重要工具之一。 ZG模具CAD插件是一款集成了众多功能,能够大幅提高模具设计效率和质量的CAD辅助工具。它不仅支持多种CAD版本,还提供了自动标注、批量打印、一键提取侧视图等强大功能,显著降低了模具设计的工作难度和时间成本。对于模具设计工程师而言,这是一款不可多得的设计辅助工具,能够帮助他们在激烈的市场竞争中脱颖而出。
2025-10-17 21:36:17 42.59MB 模具设计 自动标注 批量打印 CAD插件
1
实验一 八段数码管显示 1.实验目的: (1)了解数码管动态显示的原理。 (2)了解74LS164扩展端口的方法。 2.实验要求: 利用实验仪提供的显示电路,动态显示一行数据. 3.实验线路: 这里只是显示草图,详细原理参见第一章的1.1.15 "8155键显模块"
2025-10-17 10:47:38 3.62MB
1
### 单片机基础开发与Keil C使用详解 #### Keil C超级仿真器使用说明概览 在本文档中,我们将深入探讨如何利用Keil C超级仿真器进行MCS-51系列单片机的基础开发。这不仅包括了Keil软件的安装与配置过程,还涵盖了USB驱动的安装步骤,以及详细的软件操作指南。此外,还将通过一系列实验来巩固理论知识,并掌握实际操作技巧。 #### 一、产品简介 Keil C超级仿真器是一款专为MCS-51单片机设计的开发工具。它能够提供完整的仿真环境,使开发者无需真实硬件即可进行编程、调试等工作。这一工具特别适合初学者,帮助他们快速上手并熟悉单片机开发流程。 #### 二、KEIL软件的安装 1. **准备工作**:确保计算机操作系统版本兼容,推荐使用Windows 7及以上版本。 2. **下载安装包**:访问官方站点或可信渠道下载最新版的Keil MDK-ARM安装包。 3. **安装流程**: - 运行安装程序。 - 遵循安装向导提示完成安装。 - 安装过程中可以选择安装路径及组件等设置。 4. **激活步骤**: - 安装完成后,运行Keil软件。 - 根据提示注册账号并激活软件。 - 若有许可证文件,则导入许可证完成激活。 #### 三、USB驱动的安装 1. **获取驱动**:随Keil C超级仿真器一同提供的USB驱动,通常包含在安装包内。 2. **安装驱动**: - 将仿真器通过USB连接至计算机。 - 打开设备管理器查找未识别的硬件设备。 - 右键选择更新驱动程序,手动指定驱动程序的位置完成安装。 3. **验证连接**:安装完毕后,可通过软件检测仿真器是否正确连接。 #### 四、KEIL C软件的操作说明 ##### 产品简介 1. **系统组成**:Keil C超级仿真器由仿真头、USB接口线、仿真器软件等部分组成。 2. **实验内容**:覆盖了从基本的软件编程到复杂的硬件接口实验等多个方面。 3. **实验方式**:既支持虚拟仿真,也支持与真实硬件相连的实物调试。 4. **支持器件**:主要支持MCS-51系列及其兼容型号。 ##### 综合实验仪 1. **实验模块**:提供了丰富的实验模块,如八段数码管、键盘、步进电机控制等,便于进行各种类型实验。 2. **常用逻辑门电路**:介绍基本逻辑门的工作原理及应用实例。 3. **自由实验插座**:用于搭建自定义电路,提高实验灵活性。 4. **直流电源外引插座**:可为外部电路提供稳定的直流电源。 5. **总线插孔**:便于接入不同的总线系统,实现数据传输。 6. **空间分配**:合理规划实验板上的各个区域,确保高效利用空间。 ##### 实验例程(MCS51) 本节将详细介绍一系列实验案例,涵盖软件编程与硬件接口两大部分: 1. **软件实验** - **拆字程序实验**:学习如何通过程序分解汉字。 - **拼字程序实验**:了解汉字的拼接过程。 - **数据区传送子程序实验**:掌握数据块的移动技术。 - **数据排序实验**:实现对数据的排序处理。 - **清零程序(模拟调试)**:熟悉Keil软件的调试功能。 2. **硬件基础性实验** - **八段数码管显示实验**:学习如何控制数码管显示数字。 - **键盘扫描显示实验**:理解键盘输入与显示的基本原理。 - **脉冲计数(定时/计数器记数功能实验)**:利用定时器/计数器功能计数脉冲信号。 - **A/D转换实验**:探索模拟信号到数字信号的转换方法。 - **D/A0832转换实验**:了解数字信号到模拟信号的转换过程。 - **电子琴实验**:通过单片机控制发声装置。 - **步进电机控制实验**:掌握步进电机的驱动技术。 - **RAM扩展实验**:学习如何扩展单片机的存储容量。 - **工业顺序控制(INT0INT1)综合实验**:运用中断功能控制工业顺序。 - **扩展时钟系统(DS12887)实验**:了解实时时钟的应用场景。 - **V/F压频转换实验**:探究电压频率转换原理。 - **力测量实验**:实现力的测量。 - **温度测量实验**:掌握温度传感器的使用方法。 - **直流电机转速测量与控制实验**:通过单片机控制直流电机转速。 - **点阵式LCD液晶显示屏实验**:学习液晶显示技术。 - **点阵LED广告屏实验**:利用LED点阵屏展示文字或图像。 - **红外线遥控实验**:了解红外遥控系统的构建过程。 通过上述内容的学习与实践,可以全面掌握基于MCS-51单片机的软硬件开发技能,为进一步深入研究打下坚实基础。
2025-10-17 10:45:01 22.48MB 实验手册
1
超想3000TC单片机开发箱是一款专为初学者和专业开发者设计的实践平台,它提供了丰富的硬件资源和软件支持,帮助用户更好地理解和掌握单片机编程技术。这款开发箱的配套源代码是学习和开发过程中的重要参考资料,能够使用户深入理解单片机的工作原理和程序设计。 源代码是程序开发的核心部分,这里提到的源代码包含了C语言和汇编语言两种编程方式。C语言是一种高级编程语言,易读性强,适合编写复杂的控制逻辑,而汇编语言则更接近硬件,能够进行精细的硬件控制,对于理解单片机底层工作非常有帮助。通过分析和修改这些源代码,用户可以学习到如何在实际项目中应用这两种语言。 Keil HK是常见的单片机开发工具,它是MDK-ARM开发套件的一部分,由Keil公司提供,广泛用于STM8、STM32等ARM微控制器的开发。Keil HK包括了IDE(集成开发环境)、编译器、调试器等组件,使得用户可以在一个统一的环境中完成代码编写、编译、调试等一系列开发任务。这个压缩包中的"KeilHK"可能包含了一些配置文件、工程文件或者示例代码,用于指导用户在Keil环境下进行开发。 使用超想3000开发箱的配套源代码,配合《超想3000开发项实用手册》,可以实现从理论到实践的完美结合。手册通常会详细解释每个代码段的功能,指导如何将代码烧录到单片机中,以及如何通过开发箱的硬件接口进行功能验证。这样的学习方式可以帮助用户快速上手单片机编程,并提升动手能力。 在实际操作中,用户首先需要安装Keil HK,然后导入压缩包中的工程文件,根据手册的指导逐步理解并修改源代码。通过调试器,可以查看程序运行状态,设置断点,观察变量变化,这有助于找出和解决程序中的错误。同时,不断实践和修改源代码,将加深对单片机内部结构和指令系统的理解。 超想3000TC单片机开发箱的配套源代码及开发工具,为用户提供了全面的学习资源,涵盖了从基本的编程概念到具体的硬件控制,是单片机学习和开发的重要工具。通过深入研究这些资料,用户不仅可以掌握单片机编程技术,还能培养出解决问题和独立开发项目的能力。
2025-10-17 10:43:20 14.61MB 代码
1
内容概要:本文详细介绍了透反射相位计算与COMSOL光子晶体超表面模拟的相关技术和应用场景。首先探讨了透反射相位计算的基本原理,特别是GH位移(Gooch-Hochstrasser位移),这是由于不同材料介电性质导致的透射光和反射光之间的相位差。接着讨论了COMSOL软件在光子晶体超表面模拟中的应用,包括设置材料参数、边界条件和光波输入条件,以模拟光子晶体超表面的真实行为并分析其透射、反射特性。最后,结合透反射相位计算与COMSOL模拟,展示了如何更全面地理解和优化光子晶体超表面的光学性能。 适合人群:从事光学研究的专业人士、研究生及以上学历的学生,尤其是对光子晶体超表面和透反射相位感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解光子晶体超表面特性和优化光学系统的设计研究人员。通过掌握透反射相位计算和COMSOL模拟的方法,可以更好地理解光学现象,提高光学系统的性能。 阅读建议:建议读者先熟悉基本的光学理论和COMSOL软件操作,再逐步深入理解文中提到的具体计算方法和模拟技巧。同时,可以通过实际案例练习来巩固所学知识。
2025-10-16 20:46:45 734KB COMSOL
1
内容概要:本文详细介绍了使用COMSOL Multiphysics仿真软件对纳米孔阵列结构超表面的透射谱进行的研究。文章从纳米科技的基本概念入手,逐步讲解了COMSOL软件的功能特点,重点探讨了如何在COMSOL中构建纳米孔阵列结构的三维模型,设定仿真参数(如光波长、入射角度),并通过代码示例展示了具体的仿真流程。最终,通过对透射谱数据的分析,揭示了纳米孔阵列结构的光学特性,如特定波长的透射能力和不同入射角度下的响应情况。此外,还讨论了这些研究成果在光子晶体、太阳能电池等领域的潜在应用。 适合人群:从事纳米科技、光学、电子学和材料学研究的专业人士,尤其是对COMSOL仿真感兴趣的科研工作者。 使用场景及目标:适用于希望通过COMSOL仿真深入了解纳米孔阵列结构超表面透射特性的研究人员,旨在帮助他们更好地理解和优化相关光学器件的设计与性能。 其他说明:文章不仅提供了理论和技术指导,还鼓励读者进一步探索纳米科技的无限可能,激发更多创新思维。
2025-10-16 20:45:49 334KB
1
内容概要:本文介绍了光学领域中透反射相位的计算方法,重点阐述了GH位移(Gooch-Hochstrasser位移)作为透射光与反射光之间相位差的表现形式,其受材料介电常数、波长、厚度等因素影响。同时,文章介绍了利用COMSOL软件对光子晶体超表面进行仿真模拟的方法,通过设置材料参数、边界条件和光波输入条件,分析其光学特性。最后,文章强调将透反射相位计算与COMSOL模拟相结合,能够更准确地优化光子晶体超表面的设计与性能预测。 适合人群:从事光学、光子学、材料科学及相关领域的科研人员,具备一定电磁波理论和仿真基础的研究生或工程师。 使用场景及目标:①研究光子晶体超表面的光学响应特性;②通过COMSOL仿真结合相位计算提升光学器件设计精度;③分析GH位移对光学系统性能的影响并优化材料参数。 阅读建议:建议读者结合COMSOL软件操作实践,深入理解透反射相位的理论推导与仿真建模的结合方式,重点关注材料参数设置与相位响应之间的关联性。
2025-10-16 20:43:55 769KB
1