大数据-算法-资源受限项目调度问题的混合遗传算法研究.pdf
2022-05-08 19:07:25 3.57MB 算法 big data 文档资料
为了求解多技能资源受限项目调度问题(MSPSP),本文提出了一种改进遗传算法.首先根据问题的数学模型,确立了基于优先权的实数编码方式,并将目标函数转为适应度函数以供后续适应度的计算;接着将基于群体共享的小生境技术融入到遗传算法的选择过程中,并借助确定式采样选择和子种群的调整进一步提高算法的搜索能力;然后分别在交叉和变异操作中引入基因修复和多重验证机制,增强算法的寻优能力;最后给出了算法的总流程.算法在iMOPSE数据集上的求解效果表明本文的改进遗传算法是一种求解MSPSP问题的有效方法,对相关实际问题的研究具有良好借鉴意义.
1
针对资源受限项目调度问题,提出了一种基于人工蜂群算法的优化方法。人工蜂群算法中每个食物源的位置代表一种项目任务的优先权序列,每个食物源的位置通过扩展串行调度机制转换成可行的调度方案,迭代中由三种人工蜂执行不同的操作来实现全局最优解的更新。实验结果表明,人工蜂群算法是求解资源受限项目调度问题的有效方法,同时扩展调度机制的引入可以加速迭代收敛的进程。
2021-05-08 15:23:45 269KB 软件
1