机器学习--贷款违约行为预测(基于逻辑回归和朴素贝叶斯和随机森林及SVM四种方法实现,资源包含完成则代码及数据,数据3万余条记录
1
天池比赛_金融风控_贷款违约预测.zip
2023-12-01 13:18:04 144KB
1
任务:使用机器学习相关知识完成购房贷款违约预测,给定特征字段,输出是否会发生逾期的预测。 1.2 实验要求 1.2 题目背景 随着世界经济的蓬勃发展和中国改革开放的逐渐深入,无论是企业的发展还是从人们消费观念的转变,贷款已经成为企业和个人解决经济问题的一种重要方式。随着银行各种贷款业务的推出和人们日益膨胀的需求,不良贷款也就是贷款违约的概率也随之激增。为了避免贷款违约,银行等金融机构在发放贷款时会对借款人的信用风险进行评估或打分,预测贷款违约的概率并根据结果做出是否发放贷款的判断。如何在发放贷款前有效的评价和识别借款人潜在的违约风险,是金融机构信用风险管理的基础和重要环节,用一套科学的模型和系统来判定贷款违约的风险性可以将风险最小化和利润最大化。 1.2 数据集 数据集在../dataset 目录下,train.csv 为训练集数据,包含 120000 条数据,每条数据除去 id 和结果共有 50 个特征。test.csv 为预测集数据,包含 30000 条数据等待预测。 1.2 任务描述 本任务研究如何借助非平衡数据分类的思想对银行等金融机构的购房贷款数据进行分析,并基于随机森
2023-04-06 02:22:48 8.04MB 机器学习 随机森林
1
# 购房贷款违约预测 ### 数据集说明 训练集 train.csv ```python # train_data can be read as a DataFrame # for example import pandas as pd df = pd.read_csv('train.csv') print(df.iloc[0]) # list of 51 features and one label ``` 测试集 test.csv ```python # test_data can be read as a DataFrame # for example import pandas as pd df = pd.read_csv('test.csv') print(df.iloc[0]) # list of 51 features ``` 测试集标签文件 test_label.txt,格式如下 ```txt 1 0 1 1 ... ... ``` 其中训练集12万条,测试集3万条。 包括准确率计算 sklearn jupyter
2023-01-04 15:28:15 15KB 机器学习 随机森林
1
内含数据集以及算法的源码,适合算法工程师在本领域的练手项目
2022-12-14 16:27:02 256KB 深度学习 机器学习 项目
如需资源,请直接私信,因为上传不了辣"_"
1
Loan_Default_Prediction:贷款违约预测的端到端机器学习过程,机器学习的最终项目ISpring2018 @ GWU
2022-09-12 10:11:45 1.08MB python data-science machine-learning random-forest
1
two-layer-model 双层违约风险预测模型 原型为: 本项目为复现此双层模型,并进行了简单的模型性能对比
2022-04-26 16:38:39 138.07MB Python
1
70 智能金融Lengding Club——构建贷款违约预测模型.docx
2022-04-23 14:03:19 854KB
人工智能_项目实践_贷款违约预测_基于随机森林算法的贷款违约预测模型研究 如何在发放贷款前有效的评价和识别借款人潜在的违约风险,计算借款人的违约概率,是现代金融机构信用风险管理的基础和重要环节。本文主要研究借助非平衡数据分类的思想对银行等金融机构的历史贷款数据进行统计分析,并使用随机森林算法建立贷款违约预测模型。实验结果表型,随机森林算法在预测性能上超过了决策树和逻辑回归分类算法。此外通过使用随机森林算法对特征进行重要性排序,可以得到对最终是否违约影响较大的特征,从而能够更有效的进行金融领域的借贷风险判断。