CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-05 10:51:07 4.57MB matlab
1
针对K-means算法因随机选取聚类中心而易造成聚类结果不稳定的问题,提出PCA-KDKM算法。该算法使用主成分分析法对数据集的属性降维,提取主属性;利用k′dist曲线自动获取k值;计算平缓曲线上所含数据对象的均值并选取其中一值,作为首个初始聚类中心;利用基于密度和最大最小距离的算法思想进行聚类;结合类间距离和类内聚类提出聚类质量评价函数。将该算法与K-means、KNE-KM、QMC-KM、CFSFDP-KM在UCI数据集上进行聚类比较,结果表明该算法聚类结果稳定,聚类准确率高。将PCA-KDKM算法应用在微博舆情分析中,抓取不同类别的数万条数据进行聚类分析。实验结果表明,PCA-KDKM算法在微博舆情分析中有更高的准确性和稳定性,有利于及时发现热点舆情。
2024-01-11 11:38:00 437KB K-means算法 聚类 质量评价函数
1
图像质量评价的函数,psnr峰值信噪比,可用于去噪图像和压缩图像的质量评价
2023-12-16 14:25:47 1KB psnr峰值信噪比
1
常用的遥感融合方法常导致较严重的光谱畸变,为减少融合图像光谱特征的扭曲,提出三种新融合方法即合成变量比值法(SVR)、平滑滤波亮度调制法(SFIM)和Gram_Schimdt变换法(GS)。采用定量分析方法,分别对中等分辨率Landsat ETM+数据和高分辨率Quickbird数据的融合效果进行了评价。结果表明,不同方法具有不同的光谱保真度和空间信息融入度。同一种方法对于不同分辨率的遥感数据具有不同的融合效果。对中等分辨率Landsat ETM+数据,SFIM能产生较高的空间信息融入度和光谱保真度。利用中等分辨率Landsat ETM+数据进行融合处理时,SFIM优于合成SVR和GS;在高分辨率Quickbird数据的融合中,SVR能产生较高的空间信息融入度和光谱保真度。利用高分辨率Quickbird数据进行融合处理时,SVR则优于SFIM和GS。在中等分辨率Landsat ETM+数据、高分辨率Quickbird数据融合处理中,基于SFIM、SVR融合方法能分别获得较好的视觉效果,又能改善目视解译和遥感分类精度。
2023-12-13 10:57:43 540KB 图像融合 质量评价 城市区域
1
基于空气质量的中国主要城市人居环境质量评价,李松波,李雪铭,以2015年中国30个主要城市的12个月的月度数据为基础,采用ArcGIS的空间分析法,结合中国30个主要城市的空气质量指数(AQI)月度数据,�
2023-10-30 10:15:21 897KB 首发论文
1
视频质量评价(VQA)是以人眼的主观质量评估结果为依据,使用算法模型对失真视频进行评估。传统的评估方法难以做到主观评价结果与客观评价结果相一致。基于深度学习的视频质量评价方法无需加入手工特征,通过模型自主学习即可进行评估,对视频质量的监控和评价有重要意义,已成为计算机视觉领域的研究热点首先对视频质量评价的研究背景和主要研究方法进行介绍;其次从全参考型和无参考型两方面介绍基于深度学习的客观质量评价方法,并且从所用的卷积神经网络模型对无参考型评价方法进行了分类比较;接着介绍视频质量评价算法的相关数据库和评价算法性能指标,并对算法性能进行比较;最后对目前视频质量评价研究存在的问题进行总结,并展望了该领堿面临的挑战和未来发展方向。
2023-10-25 11:31:30 1.58MB 深度学习
1
基于django+mysql的教师教学质量评价系统源代码,教学评价系统源码 程序部署方法 1、安装程序依赖; 2、配置settings.py中的DATABASES,并在mysql中创建对应的数据库; 3、 manage.py migrate #初始化数据库; 4、 manage.py createsuperuser创建管理员; 5、manage.py runserver启动程序
2023-06-01 11:28:52 2.98MB 教师教学评价 教师评价系统
数据库 教学质量评价系统
2023-04-14 21:09:35 1.45MB 数据库 教学质量评价系统
1
语音质量评价matlab代码深度转换 深度卷积神经网络用于音乐源分离 该存储库包含用于数据生成,预处理和特征计算的类,可用于训练具有不适合内存的大型数据集的神经网络。 此外,您可以从中找到用于查询乐器声音样本的类。 在“示例”文件夹中,您可以找到上述类的使用案例,以了解音乐源分离的情况。 我们提供用于特征计算(STFT)和用于训练卷积神经网络以进行音乐源分离的代码:使用数据集iKala数据集唱歌语音源分离,使用DSD100数据集进行语音,低音,鼓分离,用于大鼓,单簧管,萨克斯风和小提琴的编码。 当原始分数可用时,后面的例子是使用RWC乐器声音数据库中的乐器样本训练神经网络的好例子。 在“评估”文件夹中,您可以找到基于Matlab的代码来评估分离质量。 为了训练神经网络,我们使用和。 我们使用已经训练有素的模型来完成不同任务,提供分离代码。 在examples / dsd100 / separate_dsd.py中将音乐分离为人声,贝斯,鼓和伴奏: python separate_dsd.py -i -o -m <path_to_model
2023-04-12 18:06:06 211KB 系统开源
1
提出了一种DCT域自适应图像水印算法。嵌入水印的过程中不断地搜索合适的强度因子,根据JPEG亮度量化表来确定中频系数嵌入强度的比例关系,并引入了一个优于PSNR和MSE的方法来评价含水印图像失真。若图像质量不满足所期望接近的失真度,用二分法不断地调整强度因子的值,以达到水印的最优嵌入,从而水印图像信息分别以不同的强度嵌入到各中频系数中。实验结果表明该水印算法对常见的信号处理具有较好的稳健性。
1