机器学习之贝叶斯分类学习课件 机器学习之贝叶斯分类学习课件 机器学习之贝叶斯分类学习课件
2022-10-22 17:05:34 2.08MB 机器学习 贝叶斯 学习课件
1
机器学习朴素贝叶斯学习文档
2022-08-11 11:05:29 8.59MB 机器学习
1
RNBL-MN 序列分类器递归朴素贝叶斯学习器的实现 ###关键词 Weka ,递归朴素贝叶斯,决策树,多项式事件模型,序列分类器 描述 用于构建和使用递归朴素贝叶斯分类器进行序列分类的 Java 类。 RNBL-MN 是一棵朴素贝叶斯分类器树,其中每个节点都是一个基于多项式事件模型的 NB 分类器。 RNBL-MN 被证明优于 C4.5 决策树学习器,并且产生与使用类似信息的 SVM 相当的准确度。 ##Reference 有关更多信息,请参阅, Dae-Ki Kang、Adrian Silvescu、Vasant Honavar “RNBL-MN:用于序列分类的递归朴素贝叶斯学习器”PAKDD'06。 依赖项: 该项目依赖于 Weka 3.6 NaiveBayesMultinominal 分类器和其他辅助功能。 Weka的效率问题 我在评估中加入了C4.5决策树方法来与RNB
2022-07-29 20:04:12 6KB Java
1
挖掘时间相关性的结构贝叶斯学习算法代码。
2022-07-18 14:24:24 1010KB MATLAB
1
朴素贝叶斯学习笔记完整版
2022-07-08 15:07:26 1.44MB 学习笔记 朴素贝叶斯 代码
1
CNO-SBL 论文题为“基于协作神经动力学优化的稀疏贝叶斯学习”的源代码
2022-05-11 09:04:29 2.67MB 代码
计算机视觉-贝叶斯学习MATLAB源码 贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。    由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。
1
针对传统基于稀疏贝叶斯学习(sparse bayesian learning, SBL)的波达方向(direction of arrival,DOA)估计算法在低信噪比条件下性能不足的问题,提出了一种基于子空间拟合和块稀疏贝叶斯学习的离网DOA估计方法。首先对样本的协方差矩阵进行特征分解,获得信号的加权子空间,然后构造等价信号的稀疏表示模型并利用块稀疏贝叶斯算法进行参数求解,同时对于网格失配带来的建模误差,将空间域内的离散采样网格点作为动态参数,通过求解一个多项式,利用期望最大化算法迭代更新离散网格点的位置。仿真实验结果表明,相对于传统SBL算法,该方法具有更好的估计精度和空间分辨率。
1
在matlab环境下对贝叶斯网络的结构进行学习 预测推理 进行分类
2022-02-25 16:39:56 797B 贝叶斯学习
1
先验概率和后验概率 用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。 先验概率反映了关于h是一正确假设的机会的背景知识 如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率 类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率 机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率
2021-12-09 23:08:49 393KB 贝叶斯
1