本数据集包含 129839 行,9 列,数据集包含如下字段: category_name:书籍的分类名称,可能是作者分类,如前几行均为 J.K. 罗琳相关书籍。 url:书籍在豆瓣的链接地址。 img_url:书籍图片的链接地址。 name:书籍名称。 pub:书籍的出版信息,包含作者、出版社、出版时间和价格等。 rating:书籍的评分,数据类型为 float64,部分存在缺失值。 rating_count:书籍的评价人数,以字符串形式呈现。 plot:书籍的情节简介,部分存在缺失值。 buy_info:书籍的购买信息,如价格、购买方式等,存在较多缺失值。 整体来看,这个数据集主要围绕豆瓣上的图书信息,可用于分析不同分类书籍的评分情况、不同作者作品的受欢迎程度等。
2025-09-20 23:05:06 54.49MB
1
内容 本数据集采集于豆瓣电影,电影与演员数据收集于2019年8月上旬,影评数据(用户、评分、评论)收集于2019年9月初,共945万数据,其中包含14万部电影,7万演员,63万用户,416万条电影评分,442万条影评,是当前国内互联网公开的电影数据集中最全的一份。 数据集共有5个文件: movies.csv、person.csv、users.csv、comments.csv、ratings.csv。 数字字段介绍,见文件。 豆瓣影评数据信息-数据集是一个详细记录了豆瓣电影用户评论、评分及相关电影和演员信息的数据集合。该数据集覆盖了2019年8月和9月的数据,其中电影和演员数据于2019年8月上旬采集,而影评数据(包括用户信息、评分和评论内容)则在2019年9月初收集,共计包含945万条数据。这个数据集不仅庞大,而且内容全面,被认为是当前国内互联网上公开的最全面的电影数据集之一。 数据集的构成分为五个主要的CSV文件,分别是movies.csv、person.csv、users.csv、comments.csv和ratings.csv。这些文件分别记录了不同的信息: 1. movies.csv:此文件包含了电影的相关信息,例如电影名称、类型、上映年份等,以及电影与演员之间的关联信息。 2. person.csv:此文件记录了演员的基本信息,包括演员姓名、性别、出生日期以及演员与电影的参与关系。 3. users.csv:此文件包含了用户的基本信息,如用户的ID、昵称、注册时间和地理位置等信息。 4. comments.csv:此文件详细记录了用户的评论内容,每个评论包含了评论者ID、电影ID、评论文本、评论时间和评分等数据。 5. ratings.csv:此文件存储了用户对电影的评分数据,包括用户ID、电影ID以及用户给出的具体评分。 这些数据文件为研究者提供了丰富的信息,使得可以从多个角度分析和研究电影产业,包括用户喜好、电影评价趋势、演员影响力分析等。通过对这些数据进行统计分析和挖掘,可以得到关于电影市场的宝贵洞察,例如哪些演员或电影更受欢迎、观众对不同类型电影的偏好、用户的评分习惯等。此外,由于数据集覆盖时间跨度上的限制,研究者还可以分析特定时期内电影市场的变化趋势,例如节假日或特殊事件对电影票房和评论的影响。 该数据集对电影产业的从业者、研究人员以及数据分析师来说,是一个极其宝贵的资源。他们可以利用这些数据来优化电影的营销策略、改进电影内容、预测电影市场趋势,甚至进行更深入的影视文化研究。同时,对于开发推荐系统和情感分析算法的工程师来说,这个数据集同样是一个很好的实践平台,能够帮助他们训练和评估他们的模型。 不过,由于数据集包含大量的个人信息和用户评论,使用该数据集时需要遵守相关法律法规,并尊重用户隐私。研究人员在处理和发布分析结果时,应当确保不会泄露个人身份信息,避免给用户造成不必要的麻烦和风险。 豆瓣影评数据信息-数据集是研究电影产业和用户行为的强大工具,它为多方面的分析和研究提供了可能,同时也提出了对数据隐私和安全的重视。随着数据分析技术的发展和应用,这类数据集在市场研究、用户行为分析和人工智能领域都将发挥重要的作用。
2025-09-17 13:20:24 295.75MB 数据集
1
# 基于Python的豆瓣电影数据分析与可视化系统 ## 项目简介 本项目是一个基于Python的豆瓣电影数据分析与可视化系统,旨在为电影爱好者和专业人士提供全方位的个性化观影服务体验。系统通过从豆瓣电影平台抓取电影数据,包括影片详情、评分、评论、标签等信息,进行数据整合、分析和可视化展示,帮助用户快速理解电影市场的整体特征与趋势。 ## 项目的主要特性和功能 1. 数据采集利用Python爬虫技术从豆瓣电影平台抓取电影数据,包括影片基本信息、主创团队、评分、评论等多元信息。 2. 数据概览生成详尽的数据概览报告,包括最高评分、评分折线图、最受欢迎类型、热门演员等统计摘要。 3. 信息检索提供用户友好的搜索接口,支持多维度条件查询,快速定位目标电影及相关信息。 4. 数据管理对已获取的电影数据进行编辑和删除操作,便于个性化整理与长期跟踪。
2025-09-10 13:01:38 6.58MB
1
Python爬虫程序源代码爬取豆瓣TOP250排行榜数据电影名称评分导演演员等信息 知识领域: 数据爬取、数据分析、Python编程技术关键词: Python、网络爬虫、数据抓取、数据处理内容关键词: 豆瓣电影、排行榜、数据提取、数据分析用途: 提供一个Python编写的爬虫工具,用于抓取豆瓣电影TOP250的排行榜数据。资源描述: 这个资源是一个基于Python编写的豆瓣电影TOP250爬虫,旨在帮助用户抓取豆瓣网站上排名前250的电影信息,以便进行数据分析和处理。内容概要: 该爬虫使用Python的网络爬虫技术,从豆瓣电影网站上提取排名前250的电影数据,包括电影名称、评分、导演、演员等信息。适用人群: 适用于具有Python编程基础的数据分析师、开发者,以及对豆瓣电影排行榜数据感兴趣的用户。使用场景及目标: 可以在数据分析、电影推荐系统等场景中使用,用户可以利用爬取的数据进行统计分析、可视化展示、推荐算法等工作,从而深入了解豆瓣电影排行榜的特点和趋势。其他说明: 该爬虫具有可配置性,用户可以根据需要选择要爬取的电影数量、排序方式等参数。爬取到的数据可以以CSV、JSON等格式进
2025-07-04 10:48:09 93.04MB python 爬虫
1
**Python 豆瓣电影爬虫** Python 是一种流行的编程语言,因其简洁的语法和强大的功能在数据分析、网络爬虫领域被广泛使用。本项目旨在利用Python构建一个爬虫,爬取豆瓣电影Top250的电影信息,包括电影名称、评分、简介、导演、主演等,然后对数据进行处理,实现数据保存、可视化展示和词频统计。 我们需要使用到Python的requests库来发送HTTP请求获取网页内容。requests库提供了简单易用的接口,能够方便地获取网页HTML代码。例如: ```python import requests url = 'https://movie.douban.com/top250' response = requests.get(url) html_content = response.text ``` 接着,我们需要解析HTML内容,这里可以使用BeautifulSoup库。BeautifulSoup可以解析HTML和XML文档,提取所需的数据。例如,我们可以通过CSS选择器找到电影的标题: ```python from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, 'html.parser') movie_titles = soup.select('.title > a') ``` 在获取了电影信息后,通常我们会将数据保存为CSV或JSON格式,以便后续分析。Python的pandas库非常适合处理这种任务: ```python import pandas as pd data = {'title': [title.text for title in movie_titles]} df = pd.DataFrame(data) df.to_csv('douban_movies.csv', index=False) ``` 为了进行数据可视化,我们可以使用matplotlib或seaborn库创建图表。例如,绘制电影评分的直方图: ```python import matplotlib.pyplot as plt plt.hist(df['score'], bins=10) plt.xlabel('评分') plt.ylabel('数量') plt.title('豆瓣电影Top250评分分布') plt.show() ``` 此外,还可以使用wordcloud库进行词频统计和词云图生成,分析电影简介中的关键词: ```python from wordcloud import WordCloud import jieba descriptions = [movie.find('span', class_='short').text for movie in soup.select('.item')] text = ' '.join(descriptions) wordcloud = WordCloud(font_path='simhei.ttf', background_color='white').generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.title('电影简介词云') plt.show() ``` 在这个过程中,需要注意反爬策略,如设置User-Agent,延时请求等,以避免被网站封禁。同时,爬虫项目应遵循网站的robots.txt规则,尊重网站的版权和用户隐私。 总结来说,这个Python豆瓣电影爬虫项目涵盖了网络爬虫的基本流程,包括请求网页、解析HTML、数据存储、数据处理及可视化。通过实践这个项目,你可以深入理解Python在网络爬虫领域的应用,并提升数据处理和分析的能力。
2025-07-04 09:48:59 256KB python 爬虫
1
22级2班 豆瓣爬虫程序(完整版).ipynb
2025-07-04 09:48:06 61KB
1
在当今的信息时代,数据可视化成为了一个重要的工具,它能够帮助人们更直观地理解和分析复杂的数据信息。特别地,在互联网文化产品评价领域,如豆瓣电影这样的平台,数据可视化分析更具有其独特价值和应用前景。豆瓣电影作为国内知名的电影评分和评论社区,积累了大量关于电影的用户评价数据,这些数据的背后蕴藏着丰富的情感倾向和审美偏好信息。 数据可视化分析是一种通过图形化的手段清晰有效地传达信息的方式。在这个项目中,我们将使用Python编程语言,借助于其强大的数据处理和可视化库,如Pandas、Matplotlib和Seaborn等,来进行豆瓣电影数据的分析和可视化。通过对豆瓣电影数据的爬取和整理,我们可以得到电影的评分、评论数、导演、演员、类型等信息。利用这些数据,我们不仅可以对电影作品本身进行排名和分类,还能深入挖掘不同电影类型受用户欢迎的程度,探索导演和演员的影响力,以及分析用户的评论情感倾向等。 通过对这些数据的可视化处理,我们可以更直观地看到各种电影指标之间的相互关系。例如,我们可以使用柱状图来比较不同导演的电影作品的平均评分;用散点图来展示电影评分与评论数量之间的关联;借助于热力图来分析不同时间维度上电影话题的热度变化;还可以利用词云图来呈现评论中最常出现的关键词汇。 这项工作不仅对于电影爱好者和电影产业从业者具有参考价值,而且对于数据分析师来说也是一个实践操作的极佳案例。通过这样的项目,分析师们可以锻炼和展示他们在数据处理、分析和可视化方面的能力。同时,这项工作也对提高数据分析的可读性和传播效率具有重要意义。 在进行数据可视化分析时,需要注意的是选择合适的数据和图表类型来表达特定的信息。例如,时间序列数据适合使用折线图来展示趋势变化;类别数据则适合用饼图或柱状图来表示占比关系;而对于展示变量间的相关性,则可以使用散点图或者相关系数矩阵图等。此外,合理的数据清洗和预处理也是保证数据可视化质量的关键步骤。 利用Python进行的豆瓣电影数据可视化分析,不仅能够帮助人们更直观地理解复杂的数据信息,而且可以为电影行业的市场分析、用户研究以及产品开发等多方面提供科学依据,从而推动电影产业的发展和创新。
2025-06-22 21:53:46 204.48MB
1
本数据集包含了大约1.3w条豆瓣短评,长评,微博,猫眼相关数据集的汇总,可用作电影情感分析,预测等任务,包含情感分类标签,(请注意:数据集中并非全部标签都为真实标签,由于一些评论缺失情感分类,因此使用了深度学习方式填充了标签,因此此数据集无缺失值。 属性说明: Comment:评论内容 Sentiment:情感分类,1-5,分别代表最差到最好 Datetime:评论发出时间 Location:评论发出地点 具体数据集样例: --------------------------------------------------------------------------------------------------------------------- Comment Sentiment Datetime Location 电影好好看,下次最来看一次,哪吒的语言太好听了。 2 2025/4/18 23:03 成都 好看,喜欢,非常喜欢 2 2025/4/18 23:02 崇州 ---------------------------------------------------------------------------------------------------------------------
2025-06-16 16:56:18 3.15MB 情感分类 数据集 深度学习
1
在本实例中,我们将深入探讨如何使用Python编程语言来实现一个爬虫,目的是抓取豆瓣电影网站上的“豆瓣电影TOP250”列表中的数据。这个列表汇集了最受用户好评的250部电影,是电影爱好者的重要参考。通过学习这个实例,我们可以了解网络爬虫的基本原理和Python的相关库,如requests、BeautifulSoup以及pandas。 我们需要导入必要的库。`requests`库用于发送HTTP请求获取网页内容,`BeautifulSoup`库则帮助我们解析HTML文档,找到我们需要的数据。`pandas`库则用来处理和存储抓取到的数据,方便后续分析。 1. **发送HTTP请求**: 使用`requests.get()`函数可以向指定URL发送GET请求。在这个例子中,我们需要访问豆瓣电影TOP250的页面,例如:`https://movie.douban.com/top250`。 2. **解析HTML**: 获取到的网页内容是HTML格式,我们需要解析它来提取数据。`BeautifulSoup`提供了强大的解析功能。我们可以用`BeautifulSoup`创建一个解析器对象,然后通过CSS选择器或XPath表达式定位到目标元素。 3. **抓取电影信息**: 在HTML中,每部电影的信息通常包含在一个特定的HTML结构内,例如`
...
`。我们需要找到这些结构,并从中提取电影的名称、评分、简介、导演、演员等信息。这通常涉及到了解HTML标签和属性。 4. **数据存储**: 抓取到的数据可以存储为CSV、JSON或其他格式,方便后期分析。`pandas`库的`DataFrame`对象可以很好地封装这些数据,使用`to_csv()`或`to_json()`方法可以将数据保存到文件。 5. **循环抓取多页数据**: 豆瓣电影TOP250的页面可能分多页展示,我们需要检查是否有下一页链接,如果有,则继续发送请求并解析,直到所有页面的数据都被抓取。 6. **异常处理**: 网络爬虫在运行过程中可能会遇到各种问题,如网络连接失败、网页结构改变等。因此,我们需要添加适当的异常处理代码,确保程序在出现问题时能够优雅地退出或者尝试恢复。 7. **遵守网站robots.txt规则**: 在进行网络爬虫时,应尊重网站的robots.txt文件,避免抓取被禁止的页面,以免对网站服务器造成负担或引发法律问题。 8. **提高效率与合法性**: 为了减少对网站的请求频率,可以设置合适的延时。此外,使用代理IP可以防止因频繁请求被封IP。同时,务必遵守相关法律法规,不要进行非法数据采集。 通过以上步骤,我们可以编写一个完整的Python爬虫,抓取并存储豆瓣电影TOP250的数据。这个实例不仅可以帮助我们学习Python爬虫技术,还能让我们实际操作,体验从数据抓取到数据处理的全过程,提升我们的编程能力。同时,这也是一个生活娱乐的实用案例,可以用于个人兴趣的电影推荐系统开发。
2025-06-15 22:45:45 236KB python 爬虫
1
《构建Android版豆瓣客户端》 在移动应用开发领域,Android平台上的豆瓣客户端是一个经典而具有挑战性的项目。本文将深入探讨如何基于服务器客户端技术,构建一个功能完备的豆瓣Android应用,涵盖“我读”、“我听”、“我评”、“我看”、“我的资料”和“我的日记”等多个模块。 我们需要理解Android客户端与服务器之间的交互机制。在豆瓣客户端的开发中,通常采用RESTful API设计原则,通过HTTP协议与豆瓣服务器进行数据交换。这涉及到网络请求库的使用,如OkHttp或Retrofit,它们能方便地处理网络请求和响应,实现JSON数据的序列化和反序列化。 “我读”模块主要展示用户的阅读记录,涉及到图书信息的获取。开发者需要调用豆瓣API获取书籍的详细信息,包括书名、作者、出版社、评分等,同时,还需要处理用户个人的阅读状态,如已读、在读、想读等。 “我听”模块涉及音乐内容,需要集成音乐播放功能。开发者可以利用第三方音乐播放库,如ExoPlayer,来实现音频流的播放、暂停、停止等操作。同时,还需要获取音乐专辑信息,这同样需要通过豆瓣API来完成。 “我评”模块涵盖了用户对书籍、电影、音乐的评价。这部分需要处理评论的创建、编辑和删除,以及评论的显示。开发者需要实现用户登录认证系统,以便在服务器上保存和检索评论数据。 “我看”模块是电影和剧集的展示,包括电影详情、评分、评论等。这里可能需要用到视频预览功能,需要考虑如何优化加载速度和用户体验。同时,需要对接豆瓣电影API,获取影片信息,并可能需要处理用户的历史观看记录。 “我的资料”模块展示用户的个人信息,包括头像、昵称、简介等。这部分需要处理用户上传图片的功能,可能涉及到图片处理库,如Glide或Picasso。同时,需要实现用户信息的更新和保存。 “我的日记”模块则涉及到笔记和日记的撰写和管理。开发者需要实现文本编辑器,支持文字格式化、图片插入等,同时,需要设计日记的存储和检索机制,可以利用SQLite数据库或者云存储服务。 在整体架构设计上,遵循MVP(Model-View-Presenter)或MVVM(Model-View-ViewModel)模式有利于提高代码可维护性和测试性。同时,考虑到性能优化,应使用异步加载、缓存策略以及合理的数据绑定。 开发豆瓣Android客户端是一项综合性的工程,涉及到网络通信、数据解析、UI设计、多媒体处理、数据库操作等多个方面。理解并熟练掌握这些技术,对于提升Android开发能力具有重要的实践意义。
2025-06-14 18:48:04 2.67MB android 服务器客户端 豆瓣客户端
1