【LLC谐振变换器效率低下原因分析及解决方法】 LLC谐振变换器因其开关损耗小、适用于高频高功率应用而备受青睐。然而,在实际设计中,许多工程师可能会遇到功率输出不足的问题。本文以半桥谐振LLC变换器为例,深入探讨效率低下原因并提出解决方案。 我们来看看半桥LLC的基本参数。在这个实例中,PFC铁硅铝磁环AS130的电感量为330uH,PFC二极管选用MUR460,PFC MOSFET为7N60,PFC输出电压为395V。负载为24V,6A,146W。LLC级的谐振网络参数包括谐振电感Ls为175uH,谐振电容Cs为15nF,励磁电感Lm为850uH,M值(励磁电感与谐振电感之比)为5,Q值为0.5,工作频率Fr为100kHz。变压器的匝比为8.5,开关使用7N60二极管。在满载150W,开关频率82kHz的情况下,虽然波形看起来正常,但效率仅达到88%。 **思考1**:低励磁电感可能导致MOSFET关断损耗增加。初始设计中,励磁电感Lm为550uH,通过调整到850uH,虽然空载时励磁电流峰值有所下降,但效率提升有限,因为降低励磁电感不利于ZVS条件的实现。 **思考2**:次级二极管在谐振网络电流等于励磁电感电流后停止传导,可能影响ZCS,尤其是在满载时,二极管振荡可能恶化效率。需要测量满载时的二极管电流波形以确认。 **思考3**:二极管钳位和双谐振电容的过载保护方案可能影响效率。这需要进一步评估其对整体性能的影响。 **建议1**:提高工作频率,确保开关频率略高于谐振频率,以补偿死区时间的影响。 **建议2**:避免在重载时使用过低的开关频率,防止副边漏感和原边节电容谐振,影响效率。 **建议3**:单独测试PFC和DCDC部分,以确定效率低下的源头。增大励磁电感虽可减少励磁电流,但可能不利于ZVS,增加死区时间反而可能降低效率。 **建议4**:对于PFC效率低的问题,可考虑采用CRM或DCM模式。如果空间允许,可使用铁氧体提升效率。 经过上述建议的实施,再次测试得到满载30分钟的效率提升至89.6%。这表明参数的微调对于效率改善至关重要。具体参数调整包括电感量增大、初级匝数减少、次级电流密度提升以及考虑最小输入电压计算峰值增益等。同时,根据Q值选择合适的谐振元件值,并通过控制初级和次级间的物理距离来调整漏感,确保系统性能的优化。 总结来说,提高LLC谐振变换器效率涉及多个方面,包括正确计算谐振频率、优化谐振网络参数、合理选择开关器件以及考虑系统的保护策略。通过对这些因素的精细调整,可以显著提升变换器的工作效率。
2025-12-01 17:33:21 308KB 谐振变换器
1
内容概要:本文详细介绍了基于TMS320F28034PNT的数字控制LLC谐振开关电源开发板CSS02404。开发板采用半桥LLC拓扑和中心抽头整流结构,具备多种保护功能如过压、过流保护等。文中展示了PID控制的实现方法及其在电源控制中的应用,讨论了多零点补偿器和双环嵌套结构的作用。此外,还提供了丰富的调试技巧,如利用GPIO模拟DAC输出调试波形,以及硬件设计中的关键细节,如MOSFET驱动电路的优化。提供的原理图和源码有助于深入理解数字控制的具体实现。 适合人群:从事电力电子、数字电源设计的研发人员和技术爱好者。 使用场景及目标:适用于希望深入了解LLC谐振开关电源数字控制原理的研究者和工程师。通过实际操作和调试,掌握PID控制、多零点补偿器的应用,提升数字电源设计能力。 其他说明:开发板不仅提供硬件支持,还包括详细的源码和调试工具,便于用户快速上手并进行深入研究。
2025-12-01 12:09:21 1.98MB
1
三电平半桥LLC谐振变换器电路仿真研究:频率控制、驱动信号CMPA CMPB与特性分析,三电平半桥LLC谐振变换器电路仿真研究:移相角度控制与DSP PWM生成方式探讨,输出电压优化与特性分析,三电平半桥LLC谐振变器电路仿真 采用频率控制方式 引入一定的移相角度(比较小) 驱动信号采用CMPA CMPB方式产生 增计数模式(参照DSP PWM生成) 相比普通半桥LLC开关管电压应力小 输出电压闭环控制 输出特性好,几乎无超调,软开关 plecs matlab simulink等软件模型都有 ,三电平半桥LLC谐振变换器; 频率控制; 移相角度; 驱动信号CMPA CMPB; 增计数模式; 电压应力小; 输出电压闭环控制; 软开关; PLC、Matlab、Simulink模型。,三电平半桥LLC谐振变换器:频率控制与CMPA CMPB驱动的仿真研究
2025-11-18 08:15:58 1.32MB edge
1
PWM控制下的半桥与全桥LLC谐振变换器的仿真过程,重点探讨了软开关技术和输出电压闭环控制的实现。文中首先简述了LLC谐振变换器的基本概念及其优势,接着逐步讲解了如何使用Matlab/Simulink/PLECS等软件构建模型,包括选择合适的谐振元件参数。随后,文章深入分析了PWM控制策略的作用以及如何通过调整PWM信号的占空比来维持输出电压的稳定性。此外,还特别强调了闭环控制系统的设计,确保输出电压保持在设定范围内,并减少了开关损耗和噪声。最后,通过对仿真结果的分析,验证了所提出的方法的有效性,并对未来的研究方向进行了展望。 适合人群:从事电力电子设计的技术人员、高校相关专业师生、对电力电子技术感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解LLC谐振变换器工作原理和技术细节的人群,帮助他们掌握PWM控制策略、软开关技术和闭环控制的实际应用,从而提高设计能力和解决实际工程问题的能力。 其他说明:本文不仅提供了理论知识,还包括具体的建模和仿真操作指导,有助于读者快速上手实践。
2025-11-07 13:53:50 513KB
1
半桥LLC谐振变换器Matlab Simulink仿真技术研究:电压闭环PI-PI控制策略下输出12V实现软开关运行的研究与实现,基于Matlab Simulink仿真的半桥LLC谐振变换器:电压闭环PI控制实现12V输出与软开关运行,半桥LLC谐振变器,Matlab simulink仿真,电压闭环PI pi控制,输出电压12V,实现软开关运行。 ,半桥LLC谐振变换器; Matlab simulink仿真; 电压闭环PI控制; 软开关运行; 输出电压12V,Matlab仿真半桥LLC谐振变换器:实现12V软开关电压闭环控制
2025-11-07 13:28:18 2.62MB safari
1
在现代电力电子技术领域,半桥LLC谐振变器是一种重要的直流至直流转换装置,它通过采用谐振技术实现了在变换过程中损耗较小的软开关操作,从而提高了变流效率。在进行半桥LLC谐振变器的设计与仿真过程中,Matlab/Simulink软件提供了一个强大的仿真平台,使得工程师能够对变流器的性能进行验证和优化。 利用Matlab/Simulink进行半桥LLC谐振变器的仿真,首先需要建立变流器的数学模型,并将其转化为仿真模型。在模型中,通常会包含一个电压闭环PI控制算法,该算法的目的是为了确保输出电压的稳定性。PI控制算法包含比例(Proportional)和积分(Integral)两个控制环节,能够对输出电压进行精确控制,使其保持在期望值(如12V)附近。 在Matlab/Simulink仿真环境中,可以通过各种工具箱如SimPowerSystems来实现半桥LLC谐振变器的电路搭建和参数配置。仿真模型需要详细地反映变流器的所有关键组件,包括开关器件、谐振电感、谐振电容和变压器等。此外,为了验证软开关运行的性能,需要在仿真模型中设置合适的开关频率和工作条件,以及对变流器在不同负载情况下的响应进行分析。 文件名称列表中包含了一些文档文件,如“半桥谐振变换器是一种常用于直流至直流转换的拓.doc”,这可能是一篇介绍半桥LLC谐振变器技术原理的文章。文件“半桥谐振变器仿真电压闭环控.html”可能是一篇关于如何通过Matlab/Simulink进行电压闭环控制仿真分析的研究报告。此外,还有一些文本文件,如“基于的类轻量化加速器设计与实现分析一引言随着人工.txt”可能涉及了加速器设计的内容,但与半桥LLC谐振变器的仿真关联不大。文档“基于半桥谐振变换器的仿真分析与电压闭环控制策略.txt”和“半桥谐振变换器在中的仿真与技术分析一引言.txt”则更明确地指向了半桥LLC谐振变器的仿真分析和控制策略。 半桥LLC谐振变器的Matlab/Simulink仿真工作涉及到电路模型的构建、电压闭环PI控制算法的实现、软开关技术的分析等多个方面。这些仿真研究对于评估变流器的性能、指导实际设计具有重要意义。
2025-11-07 13:22:08 185KB matlab
1
内容概要:本文详细介绍了60V/5A、300W输出功率的工业电源设计方案,采用LLC谐振拓扑结构,结合STM32G4系列MCU进行数字控制。文中涵盖了主拓扑选择、谐振元件选型、PWM配置、电压环和电流环控制算法、保护电路设计以及PCB布局优化等多个方面。作者通过实际开发经验和调试心得,分享了许多实用的技术细节和注意事项,如中心对齐PWM模式的应用、死区时间调整、改良版PID算法、滑动窗口滤波、硬件和软件过流保护结合等。此外,还讨论了散热设计和EMI整改等问题。 适合人群:从事电源设计的工程师和技术爱好者,尤其是对中高功率电源设计感兴趣的读者。 使用场景及目标:适用于需要高效、稳定、带有通信功能的工业电源应用场景。目标是帮助读者掌握LLC谐振拓扑的设计要点,提高电源效率和可靠性,减少开发过程中常见的错误和陷阱。 其他说明:文中提供了大量实际代码片段和调试技巧,有助于读者更好地理解和应用相关技术。同时,强调了硬件和软件相结合的保护机制,确保系统在极端情况下的安全性。
2025-10-27 08:50:41 2.57MB
1
L C 电路在调谐放大器和L C 振荡电路等很多电子电路中具有十分重要的作用 ,是不可缺少的组成部分,它的性能好坏直接关系到电子设备的质量。为了描述L C 回路的性能,人们引入了一个重要概念即品质因数。但一些教材和资料对各种品质因数没有严格分 , 容易使学生产生误解。现对这个问题 , 进行探讨和分析。 ### LC谐振回路的品质因数 #### 摘要 LC谐振回路作为电子设备中的核心组件,在调谐放大器、LC振荡电路等应用中扮演着至关重要的角色。为了准确评估LC谐振回路的性能,引入了品质因数(Quality Factor, Q)这一关键指标。本文将深入探讨LC谐振回路及其组成元件的品质因数,旨在揭示品质因数的定义、计算方法及其对电路性能的影响。 #### 一、元件的品质因数 **1.1 实际电感的品质因数** 实际电感并非理想的无损耗元件,它由电感L和内部电阻rL组成,如图1(a)所示。实际电感中的损耗主要来自于绕组的电阻以及磁芯中的涡流损耗。品质因数QL用来描述实际电感接近理想电感的程度: \[ QL = \frac{\omega L}{r_L} \] 式中,ω是角频率,L是电感量,rL是电感内部电阻。QL值越大,表示电感的损耗越小,越接近理想电感的状态。 **1.2 实际电容的品质因数** 与实际电感类似,实际电容C也存在一定的损耗,主要来源于介质损耗和导体损耗。忽略漏电阻的影响,实际电容可以近似为电容C与损耗电阻rC的串联组合,如图1(b)所示。实际电容的品质因数QC定义为: \[ QC = \frac{1}{\omega C r_C} \] QC反映了实际电容接近理想电容的程度。通常情况下,电容的损耗比电感小得多,因此在大多数LC谐振回路中,电容被视为无损耗的理想电容。 #### 二、谐振回路的品质因数 **2.1 串联谐振回路的品质因数** 串联谐振回路由电感、电容和激励源组成,如图2(a)所示。在谐振状态下,电感和电容两端的电压相等且相互抵消,使得回路的总阻抗最小。此时,回路品质因数Qs定义为无功功率与有功功率之比: \[ Q_s = \frac{\omega_0 L}{R} \] 式中,R为激励源内阻加上电感的内部电阻。可以看出,Qs与电感L、电阻R以及谐振频率ω0有关。品质因数越高,表明回路的选择性和稳定性越好。 **2.2 并联谐振回路的品质因数** 并联谐振回路由电感、电容和激励源组成,如图3(a)所示。与串联谐振不同,此时回路阻抗在谐振频率下达到最大值。并联回路的品质因数Qp同样定义为无功功率与有功功率之比: \[ Q_p = \frac{R}{\omega_0 L} \] Qp与电阻R、电感L以及谐振频率ω0有关。并联回路的品质因数同样反映了回路的选择性和稳定性。 #### 三、品质因数的意义 品质因数不仅表征了LC谐振回路的选择性和稳定性,还与电路的带宽密切相关。品质因数越高,回路的带宽越窄,选择性越好;反之亦然。在实际应用中,根据不同的需求,设计者可以选择合适的品质因数来优化电路性能。例如,在调谐放大器中,高Q值有助于提高增益;而在振荡器中,适当的Q值可以确保稳定的振荡频率。 LC谐振回路的品质因数是评估其性能的重要指标。通过对实际电感和电容的品质因数的理解,可以更深入地把握LC谐振回路的工作原理,从而更好地应用于各种电子设备的设计和优化之中。
2025-10-25 20:05:23 175KB lc谐振回路的品质因数
1
利用MATLAB对微环谐振腔中的光学频率梳进行仿真的方法和技术细节。主要内容涵盖Lugiato-Lefever (LLE) 方程的求解,以及色散、克尔非线性和外部泵浦效应对光频梳形成的影响。文中提供了完整的MATLAB代码框架,包括参数设定、时空离散化、系统算子构建、分步傅里叶法(SSFM)迭代过程及其结果可视化。此外,还讨论了不同参数调整带来的变化,如色散参数β2、泵浦功率P_pump和失谐量δ的变化对光频梳形态的影响。 适合人群:从事光通信、光谱检测领域的科研人员和技术开发者,尤其是对微环谐振腔和光学频率梳感兴趣的学者。 使用场景及目标:适用于希望深入理解微环谐振腔中光频梳生成机制的研究者,旨在帮助他们掌握LLE方程求解技巧,探索色散、非线性和泵浦效应对光频梳特性的影响,为实际应用提供理论支持和技术指导。 其他说明:文中提供的代码可以作为进一步研究的基础,支持多种扩展,如加入高阶色散、双泵浦配置或耦合多个微环等复杂结构的建模。同时提醒实验者注意实际器件中存在的额外损耗因素。
2025-10-19 10:53:11 635KB 非线性光学
1
内容概要:本文深入探讨了半桥与全桥LLC仿真中谐振变换器的四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM和混合控制PFM+PSM。每种控制方式都有其独特的应用场景和技术特点。频率控制PFM适用于需要稳定输出电压和电流的场合,如UPS系统和变频空调;PWM控制通过改变开关管的导通时间来实现对电流和电压的控制,广泛应用于LED驱动器和逆变器;移相控制PSM通过移相角来控制变换器输出,适用于电动汽车充电站和变频风机;混合控制PFM+PSM则结合了前两种控制方式的优势,提高了变换器的性能和效率。此外,文章还介绍了PLECS、MATLAB和SIMULINK等仿真工具在电力电子领域的应用,帮助工程师模拟实际电路的工作状态,预测电路性能和稳定性。 适合人群:从事电力电子研究和开发的技术人员,尤其是对谐振变换器控制方式感兴趣的工程师。 使用场景及目标:①理解和掌握谐振变换器的不同控制方式及其应用场景;②利用PLECS、MATLAB和SIMULINK进行电路仿真,优化设计方案;③提高电力电子设备的性能和能效。 其他说明:随着技术的进步,未来可能会有更多的创新控制方式出现,进一步推动电力电子设备的发展。
2025-10-19 03:37:51 1004KB
1