该资源详细解读可关注博主免费专栏《论文与完整程序》21号博文 大量电动汽车投入运营,其充放电将对电力系统产生很大影响。针对电动汽车分层分区域控制模式,重点分析底层控制中心接收到上级调度指令后如何协调与控制本区域内电动汽车的充放电行为。考虑电动汽车充放电地点的分散性和时间的随机性,提出了一种区域内电动汽车充放电控制策略。通过仿真计算,得到了该控制方式下区域内电动汽车充放电对负荷曲线的影响。电动汽车充电负荷作为可调度负荷,可减小负荷高峰期的供电压力,提高负荷低谷时的机组利用率,提高电网的经济运行水平,其优化调度对电网意义重大。基于部分电动汽车用户实际中不接受电网调度的事实,以所有电动汽车用户的充电成本之和最小、电网负荷方差最小为目标,以用户充电需求等为约束,建立了电动汽车负荷的多目标优化调度模型。模型在保证用户充电获益的同时优化电网运行。采用改进粒子群算法求解模型,仿真结果表明,用户充电选择将影响充电调度方案、用户经济性和电网运行安全。在充电调度中,需要考虑用户的充电选择。
2024-05-17 13:54:38 581KB 毕业设计
079面向削峰填谷的电动汽车多目标优化调度策略.zip
2024-05-12 16:51:03 14.5MB
1
MATLAB+cplex 运行main.m 综合考虑抽水蓄能和电化学储能电站时间特性和DR资源的多时间尺度特性,对 2 种储能电站的出力特性进行分析,实现了日前调度计划的制定,并通过日内滚动与实时修正对新能源预测与负荷预测的不确定性进行一定程度的抑制。程序注释全面!入门学习的不二选择!考虑弃风弃光等因素,参数细节与论文有差距,程序完美运行。
大量电动汽车(EVs)无序充放电会影响电力系统的安全与经济运行。随着EVs渗透率的逐步提高,研究EVs的有序充放电策略就具有实际意义。首先,在考虑EV充放电可调度时间与可调度电量、用户参与意愿因素的基础上,提出EV可转移充放电量裕度的概念,用于量化充放电量的调度灵活性。构建了计及可转移充放电量裕度的EVs充放电实时调度模型。其次,针对每个调度时段,该模型分两步求取EV充放电调度计划:第一步构建以调度时间区间内的系统总负荷水平的方差最小化为目标的二次规划模型,以求取当前时段EVs总的充电和放电功率;第二步发展以未参与充放电的EVs的可转移充放电量裕度最大化为目标的整数规划模型,求取满足第一步所求EVs总的充电和放电功率要求的充放电调度计划。然后,采用YALMIP/CPLEX高效求解器求解所构建的优化模型。最后,采用算例对所提EV充放电调度策略的有效性进行了验证,仿真结果表明所提EV充放电调度策略较EV随机充放电可明显改善负荷轮廓。
1
为了改善风电场发电的稳定性,抑制风电引起的电压波动与闪变,提高含风电电力系统的稳定性问题成为重要的研究内容,本文在简要介绍风电的特点的基础上,针对风电并网带来的电能质量及稳定性等问题,阐述了基于能量调度技术的解决方案,详细介绍了基于模糊理论"最大-最小"算法的调度系统控制器和系统其它主要部分的模型及仿真结果。控制器根据负荷用电量预测信息控制储能系统的充放电,不仅能有效抑制并网后电网的电能波动也能优化风电的发电质量。MATLAB仿真结果表明,风电储能系统能量调度策略和控制器是有效的,该系统能够有效减小风电场并网功率的波动。
1
主要介绍了详解Linux进程调度策略,以及代码实现中重要环节的指点,一起来学习下。
2022-09-24 15:11:48 151KB Linux 程调度策略
1
为了减少污染,保护环境,国家大力支持新能源汽车发展。然而,电动汽车用户找桩难、排队时间过长、设施利用率低、充电运营企业盈利难等问题难以解决。同时,电动汽车大规模无序接入电网充电会影响电网的安全稳定运行。在此背景下,电动汽车充电调度策略的研究受到广泛关注。 研究意义: 1、电动汽车用户可以减少出行成本,提高出行效率; 2、合理分配充电桩的资源,避免浪费; 3、减少汽车充电对电网负荷的不良影响; 4、促进电动汽车的使用和推广。
2022-07-07 12:06:21 723KB NSGA-II算法
1
对linux进程调度策略讲解的很浅显易懂,实时进程,普通进程的调度,区别,优先级,调度的公平性,调度的时机,内核抢占,中断
2022-07-03 21:14:11 38KB 进程调度策略
1
为了解决大数据流式计算平台中存在计算负载波动上升,但集群无法有效应对负载变化的问题,提出了基于流网络的 Flink 平台弹性资源调度策略(FAR-Flink)。该策略首先建立流网络模型并通过构建算法计算每条边的容量值,其次通过弹性资源调度算法确定集群性能瓶颈并制定动态资源调度计划,最后通过基于数据分簇和分桶管理的状态数据迁移算法,实施调度计划并完成节点间的高效数据迁移。实验结果表明,该策略在状态数据复杂的应用场景中有较好的优化效果,在满足计算时延约束的前提下提高了集群的吞吐量,缩短了状态数据迁移的时间。由此可见,FAR-Flink策略有效提升了集群对负载波动的响应能力。
1
人工智能-机器学习-车辆控制系统局域网络(CAN)调度策略研究.pdf
2022-05-03 21:06:10 6.92MB 人工智能 文档资料 机器学习