基于yolov5识别算法实现的DNF自动脚本.zip
2026-01-18 10:43:10 27.28MB
1
数据集内容: 1. 多角度场景:监控摄像头视角,行人视角; 2. 标注内容:6个分类,['No_Entry', 'No_Left_Turn', 'No_Parking', 'No_Right_Turn', 'No_U_Turn', 'Stop'],分别为禁止通行、禁止左转、禁止停车、禁止右转、禁止掉头、减速慢行等; 3. 图片总量:3630 张图片数据; 4. 标注类型:含有yolo TXT格式; 数据集结构: TrafficSigns_yolo/ ——test/ ————images/ ————labels/ ——train/ ————images/ ————labels/ ——valid/ ————images/ ————labels/ ——data.yaml 道路交通标识检测算法的必要性: 1. 交通安全需求升级 随着全球汽车保有量突破15亿辆,交通事故已成为全球第九大死因。中国交通标志检测数据显示,约30%的交通事故与驾驶员未及时识别交通标志相关。例如,未遵守限速标志导致的超速事故占比达18%,未注意禁止转向标志引发的侧翻事故占比达12%。YOLO算法通过实时识别限速、禁止通行、警示标志等,可降低驾驶员反应时间需求,为自动驾驶系统提供关键决策依据。 2. 自动驾驶技术突破 L4级自动驾驶系统要求环境感知模块在100ms内完成交通标志识别。特斯拉Autopilot、Waymo等系统已将YOLO作为核心检测算法,其单阶段检测架构比Faster R-CNN等两阶段算法快3-5倍。YOLOv8在TT100K中国交通标志数据集上实现96.7%的mAP(均值平均精度),较YOLOv5提升8.2%,满足自动驾驶对实时性与准确性的双重严苛要求。
2026-01-12 11:42:42 86.24MB 计算机视觉 目标检测 yolo算法 数据集
1
车牌识别算法是计算机视觉领域中的一个重要应用,主要目的是自动检测并识别车辆的车牌号码。在MATLAB中实现车牌识别算法,通常涉及图像处理、模式识别和机器学习等多个方面。以下将详细阐述这些知识点: 1. 图像预处理:车牌识别的第一步通常是图像预处理,包括灰度化、二值化、噪声去除等。MATLAB提供了丰富的图像处理工具箱,如`im2gray`用于灰度转换,`imbinarize`进行二值化,`bwareaopen`和`imfill`可以消除噪声和填充孔洞。 2. 车牌定位:利用边缘检测(如Canny算法)或色彩分割方法找到车牌在图像中的位置。MATLAB中的`edge`函数可用于检测边缘,结合连通组件分析(如`bwconncomp`)可确定车牌区域。 3. 车牌倾斜校正:由于拍摄角度的影响,车牌可能会有倾斜,需通过图像变换(如仿射变换)进行校正。MATLAB的`affine2d`和`imwarp`可以实现这一功能。 4. 字符分割:对定位后的车牌进行字符切割,常用的方法包括垂直投影法或水平投影法。MATLAB的`regionprops`可以帮助分析图像的特征,辅助完成字符分割。 5. 字符识别:这是整个过程的关键步骤,通常采用模板匹配或深度学习模型(如卷积神经网络CNN)。对于模板匹配,MATLAB的`matchTemplate`函数可以实现;对于CNN,可以利用MATLAB的深度学习工具箱构建和训练模型。 6. 模型训练与优化:如果采用机器学习方法,需要收集大量的车牌样本进行训练,包括正常和异常情况,以提高识别的准确性和鲁棒性。MATLAB提供数据集管理工具,以及训练和调优模型的功能。 7. 实时性能:在实际应用中,还需要考虑算法的实时性。MATLAB的并行计算工具箱和GPU支持可以加速算法运算,以满足实时识别的需求。 8. 结果评估:识别结果的准确性是衡量算法性能的重要指标,可以使用混淆矩阵、精确率、召回率等评价指标进行评估。MATLAB的`confusionmat`和`classificationReport`函数可帮助进行结果分析。 9. 应用集成:将识别算法整合到系统中,可能涉及到与硬件设备的交互,或者与其他软件系统的接口设计。 在提供的"新建文件夹"中,可能包含用于实现上述步骤的MATLAB代码、训练数据、模型文件等。通过阅读和理解这些文件,可以深入学习和实践MATLAB车牌识别算法的实现细节。
2026-01-07 21:51:48 286KB matlab
1
图 1.42 配置串口参数 (3) 点击 OK 生成模块,按照上述的方法,生成文件符号模块,把生成的模块加入到 ViewDraw 中,最后 ViewDraw 画图窗口中就包含了三个模块,如图 1.43 所示。 图 1.43 窗口包含的元件 3. 互连模块 在 ViewDraw 中所有的元件均是来自库中的。ViewDraw 中有支持三个库文件,一个是 用户自定义的库文件,它存在当前工程的目录下。一个是 Actel 的基本元器件库,如图 1.44 中的“actelcells”,一个是输入输出端口库,如图 1.44 中的“builtin”。要连接单根信号线点 击图标 ,连接总线信号,点击图标 ,然后相互连接就可以了。 图 1.44 连线窗口 放置输出输入端口,从 actelcells 库中选择 in(输入端口)、out(输出端口)元件拖入画 布,如图 1.45 所示。 ZL G AC TE L
2025-09-10 09:39:42 11.81MB Libero
1
随着科技的不断进步,深度学习技术在图像识别领域的应用愈发广泛,其中水果图像识别作为一个重要研究方向,受到了学界和产业界的高度重视。基于深度学习的水果图像识别算法的提出和研究,旨在通过先进的技术手段提高识别的准确性和效率,这对于智慧农业的精准管理以及数字医疗中营养成分的分析都具有重要的现实意义。 水果图像识别的核心在于如何借助算法准确判断出图像中的水果种类。在智慧农业的场景中,这项技术可以帮助农户快速准确地识别果树的种类,进而实现果园管理的自动化,提高水果采摘的效率和精度。而在数字医疗领域,通过识别水果图像,能够为病人提供科学的营养建议,使膳食计划更加个性化和合理。 深度学习技术,尤其是卷积神经网络(CNN)和递归神经网络(RNN),在处理图像识别任务上显示出了显著的优势。由于其能够自动提取图像特征,并通过多层神经网络结构来模拟人脑的认知功能,深度学习在水果图像识别中表现出了远超传统机器学习算法的能力。 本论文着重探讨了基于深度学习的水果图像识别算法的研究。在算法选择上,我们选择了卷积神经网络(CNN)和递归神经网络(RNN)这两种深度学习算法作为主要的研究模型。CNN擅长处理图像数据,能够从图像中提取空间层次的特征;而RNN则在处理序列数据时表现出色,能够处理与时间相关的数据。 为了训练和测试这些深度学习模型,我们构建了一个包含多种水果图像的数据集。该数据集中的图像涵盖了不同种类的水果,它们分别在不同的光照、角度和背景条件下拍摄,以确保模型在尽可能多的场景下都能保持良好的识别效果。通过对数据集进行预处理、归一化以及增强等操作,我们为模型提供了充分且多样的学习材料。 模型训练和测试是验证算法有效性的关键步骤。本文使用所建立的数据集对CNN和RNN模型进行训练,并通过测试集来评估模型的性能。实验结果表明,基于深度学习的水果图像识别算法能够达到较高的准确率,验证了算法的有效性,并且模型对于未知图像也展示出良好的泛化能力。 实验结果的可靠性和模型的泛化能力是水果图像识别研究中的重要考量。本论文还深入讨论了实验设计、模型选择和数据集构建等因素对结果的影响。在此基础上,论文对未来水果图像识别技术的发展趋势进行了展望,提出了进一步研究的方向,例如如何增强模型在复杂环境下的识别能力,如何减少模型训练所需的时间和资源,以及如何将模型应用到移动端,实现更加便捷的识别服务。 最终,本文得出结论,基于深度学习的水果图像识别算法不仅提高了识别的准确性,还提升了识别的速度,为智慧农业和数字医疗领域的发展提供了有力的技术支持。这不仅是一个技术上的突破,更是对深度学习在实际应用领域一次重要的探索和实践,为后续研究奠定了坚实的基础。
2025-08-13 14:56:16 3.36MB 毕业设计 毕业论文 毕业答辩
1
### 使用openmv颜色识别算法和pid算法控制的云台自动追踪装置设计 #### 知识点一:OpenMV颜色识别算法原理及应用 **1.1 OpenMV平台介绍** OpenMV 是一个低成本、高性能的开源视觉处理平台,专门用于简化嵌入式视觉应用的开发。它集成了图像传感器和一个强大的微控制器,可以执行复杂的图像处理任务,如颜色识别、对象检测和跟踪等。 **1.2 颜色识别技术概述** 颜色识别是计算机视觉中的一个重要分支,它主要通过分析图像中像素的颜色信息来识别特定的对象或特征。OpenMV 提供了多种颜色识别的方法,包括基于阈值的颜色识别和基于模板匹配的颜色识别。 **1.3 颜色识别算法原理** - **基于阈值的颜色识别**:这种方法通过设置一系列颜色阈值来识别目标。OpenMV 支持HSV(色调、饱和度、明度)颜色空间,用户可以根据目标颜色的HSV值设置阈值范围。 - **基于模板匹配的颜色识别**:这种方法通过比较图像中的每个区域与预定义的颜色模板之间的相似性来进行识别。OpenMV 支持多种模板匹配算法,如相关性系数、平方差等。 #### 知识点二:PID控制算法及其在云台控制中的应用 **2.1 PID控制算法基础** PID 控制是一种常用的闭环控制方法,它通过计算输入信号与期望信号之间的误差,并利用比例(P)、积分(I)和微分(D)三个部分来调整控制量,从而实现对系统的精确控制。 - **比例项**:根据误差的大小成正比地调节控制量。 - **积分项**:通过累积误差来消除静态误差。 - **微分项**:预测并减少未来的误差。 **2.2 PID控制器设计** 为了将PID控制应用于云台自动追踪装置,需要根据云台的实际需求来设计PID控制器。这包括确定PID参数(Kp、Ki、Kd),并实现相应的软件算法。 **2.3 控制器参数整定方法** - **Ziegler-Nichols法则**:这是一种经典的PID参数整定方法,通过逐步增加比例增益直到系统出现振荡,然后根据获得的周期时间来计算PID参数。 - **试错法**:通过手动调整PID参数观察系统的响应情况,逐步优化控制器性能。 **2.4 追踪过程中的稳定性与精度分析** 为了确保云台追踪过程中的稳定性和精度,需要对PID控制器进行细致的调试。这包括分析不同PID参数组合下系统的响应特性,并通过实验验证来评估控制器的性能。 #### 知识点三:云台自动追踪装置的整体设计与实现 **3.1 装置整体设计方案** 整个追踪装置的设计主要包括硬件选型、电路设计、软件编程以及算法优化等方面。 - **硬件选型**:选择合适的OpenMV摄像头模块、云台电机、电源管理单元等硬件组件。 - **电路设计**:设计合理的电路连接方式,确保各个硬件组件之间的通信和协调工作。 - **软件编程**:编写控制程序,实现颜色识别算法和PID控制算法的集成。 - **算法优化**:通过对颜色识别算法和PID控制算法的不断优化,提高追踪装置的性能。 **3.2 软件架构与功能模块** - **颜色识别模块**:负责处理图像数据,识别目标颜色。 - **PID控制模块**:接收颜色识别模块提供的数据,根据PID算法计算出云台的控制指令。 - **云台控制模块**:接收PID控制模块发出的指令,控制云台电机的转动方向和速度。 **3.3 装置工作流程** 1. **启动装置**:打开电源,初始化所有硬件设备。 2. **图像采集**:OpenMV摄像头捕获实时视频流。 3. **颜色识别**:对视频帧进行颜色识别处理。 4. **PID计算**:根据颜色识别的结果,计算出PID控制信号。 5. **云台控制**:根据PID控制信号驱动云台电机进行追踪。 #### 知识点四:颜色识别算法实现与优化 **4.1 颜色空间与颜色模型选择** 为了提高颜色识别的准确性,需要合理选择颜色空间。OpenMV 支持多种颜色空间,如RGB、HSV等。通常情况下,HSV颜色空间更适合于颜色识别任务,因为它能更好地分离颜色信息。 **4.2 颜色识别算法具体实现** 实现颜色识别算法的具体步骤包括: - **图像预处理**:包括图像缩放、灰度化、滤波等操作。 - **颜色阈值设定**:根据目标颜色的HSV值设置阈值范围。 - **颜色分割**:使用阈值将目标颜色从背景中分离出来。 - **目标定位**:计算目标颜色在图像中的位置。 **4.3 算法性能评估与优化策略** 为了提高颜色识别算法的性能,可以通过以下方式进行优化: - **降低噪声干扰**:采用高斯模糊等滤波方法减少图像噪声。 - **提高处理速度**:通过减少图像分辨率、优化算法逻辑等方式提升处理速度。 - **增强鲁棒性**:增加颜色识别算法的自适应能力,使其能够在不同的光照条件下正常工作。 #### 知识点五:PID控制效果实验验证 **5.1 实验验证与结果分析** 为了验证PID控制算法的有效性,需要进行一系列实验测试。这些测试通常包括: - **静态测试**:在固定目标位置的情况下测试云台的稳定性。 - **动态测试**:在移动目标的情况下测试云台的追踪性能。 - **光照变化测试**:在不同的光照条件下测试颜色识别算法的鲁棒性。 通过对比不同PID参数组合下的测试结果,可以进一步优化PID控制器的性能,从而实现更稳定、更精确的目标追踪。 通过结合OpenMV颜色识别算法和PID控制算法,可以设计出一种高效、稳定的云台自动追踪装置。这种装置不仅能够实现对目标物体的快速准确识别,还能够通过PID控制算法实现对云台运动的精准控制。该研究不仅为自动追踪技术提供了一种新的解决方案,也为OpenMV和PID算法在相关领域的应用提供了有价值的参考。
2025-08-01 16:12:26 53KB
1
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,它在计算机视觉领域,特别是图像识别任务上表现出了极高的效能。交通标志识别是自动驾驶、智能交通系统中的重要环节,能够确保车辆安全行驶,遵守交通规则。本项目以卷积神经网络为基础,实现了对交通标志的有效识别。 在交通标志识别中,CNN的优势在于其能够自动学习和提取图像特征。传统的图像处理方法通常需要手动设计特征,而CNN通过卷积层、池化层和全连接层等结构,可以自适应地从输入图像中学习多层次的特征表示。卷积层通过共享权重的滤波器对图像进行扫描,提取局部特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层的特征映射转换为分类结果。 本项目可能包含以下步骤: 1. 数据预处理:收集大量的交通标志图像,包括不同光照、角度、尺寸和遮挡情况下的样本,然后进行归一化、缩放和增强操作,如随机翻转、裁剪,以增加模型的泛化能力。 2. 构建CNN模型:根据任务需求,设计CNN架构。通常,一个基础的CNN模型可能包含几个卷积层、池化层,以及一些激活函数(如ReLU),最后通过全连接层进行分类。此外,还可以引入批量归一化、dropout等技术来提高模型稳定性和防止过拟合。 3. 训练模型:使用标注的交通标志图像训练模型,通过反向传播优化损失函数,如交叉熵损失,更新权重。训练过程可能需要调整学习率、批次大小等超参数,以达到最优性能。 4. 模型验证与调优:在验证集上评估模型性能,观察精度、召回率等指标,根据结果调整模型结构或训练策略。如果出现过拟合,可以考虑添加正则化项或提前停止训练。 5. 测试与应用:用独立的测试集验证模型的泛化能力,并将其部署到实际系统中,例如嵌入到自动驾驶车辆的感知模块。 交通标志识别算法的成功实现不仅依赖于强大的CNN模型,还离不开高质量的标注数据和合理的模型设计。通过持续优化和改进,该算法能够帮助我们构建更加智能和安全的交通环境。
2025-06-19 16:37:51 11.56MB 卷积神经网络 交通标志识别
1
### 基于深度学习的车辆重识别算法研究与系统实现 #### 摘要精析 本研究针对当前交通管理中的难题——车辆重识别,采用深度学习技术探索了一种有效的解决方案。随着城市化进程的加快及车辆数量的激增,传统的人工监控方式已无法满足日益增长的需求,智能化交通系统的建设显得尤为迫切。其中,车辆重识别技术是构建智能交通体系的关键技术之一,它能够在不同的摄像头视角下准确地识别同一辆车,这对于智能安全防范、车辆跟踪等应用场景至关重要。 然而,当前基于车牌识别的技术虽然可靠,但也面临着诸多挑战,如车牌遮挡、伪造车牌以及个人隐私保护等问题。因此,发展无需依赖车牌信息的车辆重识别技术成为研究的重点方向之一。本文旨在探讨如何利用深度学习技术提取车辆的外观特征,从而实现高效的车辆重识别。 #### 核心问题及解决策略 本研究主要围绕两大核心问题展开: 1. **基于局部特征的方法通常忽视了不同局部特征之间的内在联系**,这导致模型在处理细节方面的能力较弱,难以区分那些外观极为相似的车辆。 2. **传统的注意力机制未能充分考虑特征通道间的相关性**,存在特征冗余现象,降低了特征表达的质量,进而影响了车辆重识别的准确性。 针对第一个问题,作者设计了两种基于局部特征的深度学习网络模型: - **基于LSTM的局部特征提取网络**:利用LSTM(长短时记忆)网络的记忆和遗忘特性,对图像中的局部特征进行序列化建模,建立各个局部特征之间的依赖关系,以此增强模型对于局部细节的捕捉能力。 - **基于图卷积的局部特征提取网络**:通过图卷积网络处理图像的局部特征,实现特征之间的信息融合,进而提取出更为精细的空间结构特征。这种网络能够更好地捕捉图像中各局部特征之间的空间关联性。 针对第二个问题,研究团队提出了一种新的注意力模块——基于通道相关性的注意力模块(CCSAM),该模块通过构建通道相关性矩阵来提升每个特征通道的表示能力,从而改善全局特征的质量。这一改进有效地提高了车辆重识别的准确性。 #### 实验结果与系统实现 通过在两个公开的数据集上的实验验证,这两种局部特征提取网络以及CCSAM注意力模块的有效性和合理性得到了充分证明。实验结果表明,这些方法显著提升了车辆重识别的性能。 此外,基于以上研究成果,研究团队还开发了一个基于深度学习的车辆智能重识别系统。该系统不仅能够实现车辆的目标检测,还能完成指定车辆的重识别和轨迹绘制,并支持跨摄像头视频之间的车辆重识别功能。这一成果不仅具有重要的学术意义,也为实际应用中的智能交通系统提供了有力的技术支持。 #### 结论与展望 《基于深度学习的车辆重识别算法研究与系统实现》论文深入探讨了如何利用深度学习技术解决车辆重识别中的关键问题,并成功开发了一套高效的车辆重识别系统。未来的研究可进一步优化现有的算法模型,拓展其在更多复杂场景下的应用潜力,为智慧城市建设和智能交通系统的完善做出贡献。
2025-05-02 12:03:40 7.56MB 深度学习 毕业设计
1
信号调制方式的识别在通信系统分析中是一个极其重要的技术环节。随着通信技术的迅速进步,调制方式的种类越来越多,如何高效准确地识别和监视无线电通信信号已成为军事和民用领域亟待解决的技术难题。传统上,信号调制方式的识别主要依赖于工程师的专业经验和各类信号分析工具。 本文介绍了一种新的信号调制方式混合识别算法,该算法由冯晓东和龚鑫提出,目的是为了识别当前通信系统中使用的主要调制方式。该算法创新性地结合了瞬时特征参量和高阶累积量的特点,并通过决策树分类器来实现信号调制方式的分类识别。这种基于决策树的混合识别方法,在识别通信信号调制方式上表现出了良好的性能。 算法利用信号的谱对称性将待识别的信号分为两大类。这个步骤是基于信号功率谱的对称性来实现的,该对称性可以反映出不同的调制方式所具备的特征。随后,算法从四阶累积量中提取两个特征参数,并结合归一化中心瞬时频率的标准差以及归一化中心瞬时幅度的方差来进行类内识别。这些特征参数的数量少,但可以有效地将复杂的信号特征进行抽象和简化。 最终,决策树分类器被用来完成整个信号调制方式的识别过程。决策树是一种有监督学习方法,它通过构建决策树来对样本进行分类。在每一步中,算法选择最佳的特征来分割数据集,直至达到预定的停止条件,例如,当决策树达到了最大深度,或者所有的数据都被正确分类。 本文提到的算法具有较高的稳健性,即在通信信号质量不佳,比如信噪比较低的情况下,依然能够有效地识别出调制方式。MATLAB仿真结果验证了这一点,该算法能够在信噪比不低于6dB的情况下,实现对十种信号调制方式(AM、LSB、USB、2FSK、4FSK、BPSK、QPSK、OQPSK、16QAM、32QAM)的准确识别,并且准确率在95%以上。这说明即使在较低信噪比的条件下,该算法也能够有效地识别复杂的调制方式。 在信号调制识别领域,高阶累积量方法具有抑制高斯白噪声的能力,这使得它成为研究复杂调制识别的一个热点。高阶累积量可以更有效地表征信号的统计特性,从而为复杂信号的识别提供更加准确的依据。与之相比,基于瞬时信息的调制识别方法虽然计算量小,便于工程实现,但对复杂调制信号如MPSK、MQAM的自动识别仍然是一个难点。 关键词“瞬时特征值”指的是信号在特定瞬时的特征参数,这些参数在信号处理和识别过程中是分析信号状态的重要指标。瞬时特征值能够反映出信号在某一时刻的状态,对于信号调制方式的识别尤其重要。而“调制识别”则是指通过分析信号的特定特征来确定信号采用的调制方法,这是无线通信信号分析的一个核心任务。高阶累积量通常用于描述信号的非高斯性,在调制识别中能够提供比传统统计方法更强的区分能力,尤其是对抗高斯噪声的能力较强。 本文提出的混合识别算法结合了多种信号处理技术的优点,为信号调制方式识别提供了新的研究方向和方法。该算法不仅提高了识别的准确性,还减少了运算量,有望在未来的通信信号分析中得到广泛应用。
2025-04-19 12:57:45 262KB 瞬时特征值
1
这里只做演示,都是获得老师高度认可的设计,有完整数据库,源码和文档,简单配置一下就可以用
2025-04-09 01:04:42 3.9MB 毕业设计 Python Django
1