内容概要:本文档是2024年由多家单位共同编制的关于AI技术与工业互联网融合发展及相关安全问题的详尽研究报告。主要内容涵盖AI+工业互联网的主要应用场景,探讨其带来的生产效率提升与企业竞争力的增强,也详细剖析了各个场景如工业制造、石油化工、矿山冶金和电力能源中存在的安全风险,以及针对这些风险提出的综合治理方案和技术实现细节。文中特别介绍了‘1266’架构——一种针对AI+工业互联网构建的安全体系架构。此外,文档还包括多个实际案例的研究,显示了具体技术实践及效果。 适合人群:工业领域的IT安全管理人员、技术专家及企业管理层。 使用场景及目标:为希望深入了解AI在工业互联网领域应用的个人和企业提供理论基础和实用参考;旨在通过介绍最新的安全技术和实践案例,帮助企业构建完整的工业互联网安全防护体系,确保系统稳定与数据安全。 其他说明:该文件还对未来发展方向做了简要讨论,强调政策支持、技术创新和社会责任共同推动AI技术在未来工业互联网安全领域的作用。建议读者紧跟最新政策导向,并积极参与到标准建设和自主研发中来,以促进该行业的健康发展。
2025-12-02 13:07:13 2.06MB 工业互联网 AI安全 网络攻防 风险评估
1
- 基于 Dify 1.4.2 的情绪压力测评 Chatflow,可直接导入 心理测评机器人.yaml 复用。 - 包含 5 题情绪压力量表、答案解析、打分循环、维度统计与 markdown 报告生成,支持提醒补充未答题。 - LLM 节点预设通义千问2.5 72B(dashscope),附心理伦理 system prompt,输出心理概述+评分+建议。 - 适用于 HR、心理服务、社群助手等场景,可拓展指标、改写问题或串接自有知识库。 使用方法: 1. 通过导入DSL文件直接导入自己的Dify中 2. 修改一下模型节点的模型选择即可使用
2025-11-29 16:21:45 24KB 心理测评 AI 人工智能
1
S盒密码指标自动评估软件sboxAssessment是一款专业工具,旨在自动化地评估对称密码算法中S盒组件的性能指标。S盒,即替代盒,是现代对称密码算法中的核心组成部分之一,它通过非线性变换对数据进行处理,以增强加密过程的安全性。在对称密码算法中,S盒的作用相当于非线性序列生成器,能够帮助抵御多种密码攻击,如差分密码分析和线性密码分析等。 该软件能够对S盒的多项关键性能指标进行全面的评估,这些性能指标包括: 1. 差分均匀度:差分均匀度是衡量S盒抵抗差分密码分析能力的指标,差分密码分析是通过分析输入差分和输出差分的概率分布来进行密码攻击的方法。理想的S盒应该具有高的差分均匀度,即任意非零输入差分对应的输出差分出现概率均等。 2. 线性度:线性度衡量的是S盒输入与输出之间的线性关系程度。S盒应该尽量保持非线性,以提高抗线性密码分析的能力。 3. 非线性度:与线性度相对,非线性度越高,S盒抵抗线性密码分析的能力就越强。 4. 代数次数:代数次数是S盒多项式表示中的最大次数,它反映了S盒的非线性复杂性。 5. 代数项数:代数项数指的是在表示S盒的多项式中,不同项的数量,它与S盒的代数结构复杂性有关。 6. 代数正规型:代数正规型描述了S盒函数在代数中的规范形式,它影响着S盒在密码分析中的脆弱点。 7. 不动点个数:不动点指的是输入和输出相同的情况,S盒中的不动点数量会影响密码算法的强度和安全性。 8. 扩散特性:扩散特性描述了S盒如何将输入位的变化扩散到输出中去。理想情况下,输入的任何微小变化都应该导致输出的显著变化,以增强算法的抗差分分析能力。 9. 雪崩效应:雪崩效应是指输入数据的微小变化应该引起输出数据的显著变化。这是一个重要的设计目标,以确保密码算法的输出对输入的微小变化极度敏感。 S盒密码指标自动评估软件sboxAssessment的开发是密码学研究和实践中的一个关键进展,因为它极大地简化了对称加密算法的设计和分析过程。通过自动化评估,可以快速筛选出满足安全性要求的S盒设计,同时确保设计的S盒能够抵御已知的密码攻击手段。 此外,该软件针对的是对称密码算法,包括分组密码和序列密码。分组密码是指将明文分成固定长度的块进行加密的算法,而序列密码则是使用密钥流与明文序列异或以产生密文序列的算法。软件还与杂凑算法相关,杂凑算法是一种将任意长度的输入数据转换成固定长度输出的算法,虽然杂凑算法不直接使用S盒,但在某些密码体系中,S盒的特性可能会影响整个系统的安全性。 sboxAssessment软件为密码学研究者和密码算法设计者提供了一个强大的工具,以确保他们设计的对称加密算法能够在安全性方面达到高标准。通过自动化的评估过程,软件大大提高了评估效率,减少了人为错误,同时也为密码学教育和培训提供了一个有力的教学工具,帮助学生和从业人员更好地理解和掌握S盒的设计和分析方法。
2025-11-22 10:30:10 2.29MB 对称密码 分组密码 序列密码 杂凑算法
1
电子对抗作战仿真与效能评估.pdf
2025-11-21 21:35:56 20.74MB
1
利用PSpice仿真的双脉冲测试电路来评估SiC MOSFET和IGBT开关特性的方法。首先解释了双脉冲测试电路的基本概念及其重要性,接着描述了仿真电路的具体结构,包括驱动电路、被测器件(SiC MOSFET和IGBT)及测量设备。文中还提供了简化的代码示例,展示了如何通过调整参数来模拟不同的开关条件,从而获取有关开关速度、损耗等性能指标的数据。最后讨论了该电路在优化驱动电路设计和评估不同功率半导体器件性能方面的应用价值。 适合人群:从事电力电子领域的研究人员和技术人员,尤其是那些需要进行功率半导体器件性能评估的人群。 使用场景及目标:①研究和开发新型功率半导体器件;②优化现有器件的驱动电路设计;③评估器件在各种工况下的性能表现,确保系统高效可靠运行。 其他说明:文中提到的双脉冲测试电路不仅限于理论分析,还可根据具体需求进行硬件定制,进一步提升其实用性和灵活性。
2025-11-19 15:17:42 503KB
1
VxWorks 6.6是一款由Wind River Systems开发的实时操作系统(RTOS),广泛应用于嵌入式系统,尤其在航空、航天、通信等领域。这个“VxWorks 6.6 评估版超强功能install文件”提供了对该操作系统的完整评估体验,包括对称多处理(SMP)支持和源代码安装选项。 SMP是指在同一硬件平台上,操作系统能够同时调度多个处理器执行任务,以提高系统性能。在VxWorks 6.6中,SMP功能对于需要高性能和高并发性的应用至关重要,例如在处理大量并发网络连接或实时数据处理的设备中。 源码安装意味着用户可以访问VxWorks的底层源代码,这对于开发者来说是一个巨大的优势。他们可以根据具体需求对内核进行定制,优化性能,或者添加特定的功能模块。源码安装也便于调试和故障排查,因为可以直接查看和修改代码。 标签中的“VxWorks install.txt”可能是一个安装指南或说明文档,它应该包含了安装VxWorks 6.6评估版的详细步骤,包括如何使用提供的“超强key”来激活系统。这些密钥是评估版的重要组成部分,允许用户在一定期限内无限制地使用VxWorks的所有功能。 “Kernel Source”指的是VxWorks的操作系统内核源码,这是VxWorks的核心部分,负责管理系统的硬件资源,调度任务,以及处理中断等。通过拥有内核源码,开发者可以深入了解系统运行机制,进行低级别的优化和定制。 遗憾的是,描述中提到的“缺MIPS盘key”表明该安装包不包含用于MIPS架构的授权密钥。MIPS是一种常见的嵌入式处理器架构,如果目标系统基于MIPS,那么用户可能需要寻找其他途径获取相应的密钥才能在该硬件上运行VxWorks。 "eval66full_install.txt"很可能包含了整个评估过程的详细信息,如安装配置、密钥激活过程,以及可能的限制和注意事项。用户应当仔细阅读此文件以确保正确无误地安装和使用VxWorks 6.6评估版。 VxWorks 6.6 评估版是一个强大的嵌入式实时操作系统,提供了SMP支持和源代码访问,使开发者能够深度定制系统以适应各种复杂的嵌入式应用需求。然而,缺少MIPS架构的密钥限制了其在某些硬件平台上的应用。正确理解和利用提供的资源,是充分利用这一操作系统的关键。
2025-11-09 00:10:14 1KB VxWorks install.txt Kernel Source
1
在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
张社香的AI口腔健康评估报告由南昌东湖区德韩口腔门诊有限公司出具,该报告基于患者数据,利用AI技术生成,其目的是为医疗机构提供临床参考数据。报告指出张社香存在多种口腔问题,包括牙体缺损、根尖周炎、残根、牙缺失、牙槽骨吸收和牙齿磨损等。 在口内照分析部分,报告展示了张社香的口内右侧位和左侧位照片,全景影像分析则涵盖了全景片的解读。问题总结部分详细列举了患者存在的具体问题,并以颜色区分了不同问题的优先级。具体来说,诊断结果和治疗建议都有所提及,包括针对牙列缺损、残根、牙体缺损、重度牙齿磨损、倾斜牙齿和重度牙槽骨吸收等情况的治疗措施。 在问题解读部分,报告进一步详细解释了牙缺失、残根、牙体缺损和牙齿磨损的概念、成因、危害以及预防和治疗措施。例如,报告指出牙缺失会影响咀嚼功能和面容美观,可能导致咬合关系不良以及颞下颌关节病变,而残根可能导致美观问题、发音和咀嚼功能障碍,并增加局部肿痛和创伤性溃疡的风险。 为了预防这些口腔问题,报告建议养成良好的口腔卫生习惯,定期进行口腔清洁维护,并积极治疗龋坏和牙周炎症等疾病。同时,针对具体问题,如残根建议尽早拔除,牙体缺损则建议采用充填或冠修复等方法。 报告的最后部分进行了知识科普,强调了预防口腔问题的重要性,并提示公众应定期检查口腔健康状况,以避免更严重的后果。报告强调,尽管AI技术在口腔健康评估中起到了辅助作用,但最终的诊断和治疗方案应由专业医生根据病历进行确定。 张社香的AI口腔健康评估报告是一份详细分析个人口腔健康状况的文件,通过AI技术的辅助,为患者提供了全面的问题概览、影像分析、问题总结和科普知识。报告突出了口腔健康问题的严重性,并强调了预防和治疗的必要性,旨在帮助患者更好地维护口腔健康。
2025-11-04 14:03:02 3.76MB
1
Matlab代码verilog HDL编码器评估参考指南 使用HDL Coder生成VHDL或Verilog来定位FPGA或ASIC硬件的入门指南。 该文件为以下方面提供了实用指南: 设置您的MATLAB算法或Simulink模型以生成HDL代码 如何创建支持HDL的Simulink模型,Stateflow图和MATLAB Function模块 HDL代码生成的技巧和高级技术 针对特定FPGA / SoC目标的代码生成设置,包括AXI接口 转换为定点或利用本机浮点 针对各种目标进行优化 验证生成的代码它还包括一些示例,以说明选定的概念。
2025-11-03 10:53:20 3.15MB 系统开源
1
随着数据分析领域的日益火热,掌握Python数据分析成为了许多数据科学家和工程师的必备技能。本次分享的内容来自B站知名教育博主@林粒粒呀的Python数据分析课程。课程内容丰富全面,涵盖了Python基础知识以及数据分析的多个重要环节。 Python基础知识是数据分析的重要基石。Python作为一种高级编程语言,以其简洁明了的语法和强大的社区支持,成为了数据分析的首选工具之一。Python基础知识包括但不限于变量、数据类型、控制结构、函数定义、面向对象编程等。掌握了这些基础,便能够在后续的数据处理中得心应手。 数据读取是数据分析的第一步。在实际工作中,数据往往存储在多种格式的文件中,比如CSV、Excel、JSON等。因此,能够熟练使用Python读取这些文件并将其加载到数据分析环境中至关重要。在本课程中,@林粒粒呀老师将教授如何使用Python内置的库如pandas来读取各种格式的数据文件,并理解数据结构与数据框架的概念。 数据评估是确保数据质量的关键环节。在拿到数据之后,必须对其进行全面的评估,包括数据的完整性、准确性以及是否存在异常值等。评估之后,对于发现的问题进行清洗是数据分析中不可或缺的步骤。数据清洗可能包括处理缺失值、去除重复项、修正错误以及格式转换等操作。在本课程中,学生将学习到如何运用pandas进行有效的数据清洗,为后续分析打下坚实的基础。 数据分许是核心环节之一。数据分析旨在通过统计方法对数据进行解读,找出数据之间的关联性、趋势或者模式。在本课程中,@林粒粒呀老师将结合案例,教授学生如何进行数据的统计分析和假设检验,使用Python中的科学计算库如NumPy和SciPy进行数据分析。 数据可视化是将分析结果以图表的形式直观呈现给观众。一个良好的可视化不仅能够帮助数据分析人员快速理解数据,也便于向非专业人员展示分析结论。在课程中,学生将学习如何使用matplotlib、seaborn等可视化库,将复杂的数据分析结果转化为易于理解的图表,如柱状图、折线图、散点图以及热力图等。 通过本课程的学习,学员不仅能够掌握Python在数据分析方面的应用,更能熟悉数据分析的全流程。从数据的读取、评估、清洗到分析和可视化,每一步都至关重要。此外,本课程内容不仅限于理论讲解,还包括了大量的实战练习,帮助学员巩固所学知识,提高解决实际问题的能力。 @林粒粒呀老师的Python数据分析课程是一门全面且实用的课程,无论是对于数据分析新手还是希望提升自我技能的数据分析师来说,都是不可多得的学习资源。通过系统的学习,学员将能够快速地提升自己的数据分析技能,为职业发展奠定坚实的基础。
2025-10-30 10:25:37 14.96MB Python项目
1