在机器学习领域,数据预处理是至关重要的一步,其中训练集和测试集的划分是评估模型性能的关键。本文将详细讲解如何使用Python进行这一过程,特别是利用scikit-learn库中的`train_test_split`函数。 让我们了解数据集。在本示例中,我们使用的是UCI机器学习库中的Wine数据集。这个数据集包含178个样本,每个样本有13个特征,用于区分三种不同类型的葡萄酒。数据集的第一列是类标签,其余13列是描述葡萄酒属性的数值特征。 ```python import pandas as pd import numpy as np # 加载Wine数据集 url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data' column_names = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] df_wine = pd.read_csv(url, header=None, names=column_names) ``` 接下来,我们要将数据集划分为训练集和测试集。通常,我们使用一部分数据(如75%)来训练模型,其余部分(如25%)用于测试模型的泛化能力。这可以通过scikit-learn的`train_test_split`函数实现: ```python from sklearn.model_selection import train_test_split # 提取特征和目标变量 X = df_wine.iloc[:, 1:].values # 所有特征,不包括类标签 y = df_wine.iloc[:, 0].values # 类标签 # 使用train_test_split函数划分数据 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) ``` 这里的`test_size`参数指定了测试集的比例,`random_state`用于确保每次运行代码时都能得到相同的结果,便于复现实验。`train_test_split`函数会随机选取指定比例的数据作为测试集,其余部分作为训练集。 划分训练集和测试集有助于避免过拟合,即模型在训练数据上表现很好,但在未见过的新数据上表现较差。通过在独立的测试集上评估模型,我们可以更准确地估计模型在实际应用中的效果。此外,还可以使用交叉验证(如k折交叉验证)进一步优化模型性能评估。 在完成训练集和测试集的划分后,我们就可以使用这些数据训练模型(如线性回归、决策树、随机森林或神经网络等),然后在测试集上评估模型的预测性能。评估指标可能包括准确率、精确率、召回率、F1分数、AUC-ROC曲线等,具体取决于任务的性质(如分类或回归)。 Python和scikit-learn库提供了一种简单而强大的方式来处理训练集和测试集的划分,使得机器学习项目的实施变得更加便捷。通过合理地划分数据,我们可以更好地理解和优化模型的性能,为实际应用做好准备。
1
划分训练集和测试集 在这个示例中,我们使用train_test_split方法将数据集划分为训练集和测试集,并指定了测试集大小的比例和随机数种子。该方法会返回4个元素,分别表示训练集的特征数据、测试集的特征数据、训练集的目标数据和测试集的目标数据。需要注意的是,在实际使用过程中,我们需要根据具体的应用场景选择合适的划分方法,并根据需求对训练集和测试集进行进一步处理。
2025-04-14 10:32:17 602B python
1
yolo格式的widerperson数据集(已划分训练集和测试集
2024-01-20 13:30:14 676.29MB 行人数据集
1
使用pytorch写的mobilenet v2代码,详细注释,可以生成训练集和测试集的损失和准确率的折线图,详细注释了神经网络的搭建过程
2023-09-10 20:02:26 8.06MB pytorch pytorch mobilenetv2
1
复旦大学中文文本分类训练集和测试集 文件太大压缩为了zip格式。 all文件夹为复旦大学中文文本分类语料集, test_corpus为该语料集中挑选部分划分出来的, train_corpus为该语料集中挑选test_corpus后剩余部分划分出来的。 下载以后可以按照自己的要求指定比例划分训练集和测试集,也可以按照本文档的划分方法。
1
BDD100K数据集,包含所有的训练集和测试集,以及darknet文件,可以直接训练
2022-10-30 21:54:51 389B BDD100K 数据集
1
人脸转动漫数据集,可由cyclegan等算法实现人脸和动漫人脸互换,已由DK数据工作室处理好,已划分训练集和测试集,共1w张图片,可直接作为cyclegan的数据集。本工作室的项目经验在B站展示:https://space.bilibili.com/188774516/video
2022-07-01 17:07:37 390.25MB 数据集 人脸转动漫 动漫 人脸
内容概要:python脚本划分训练集测试集。可以把coco、voc格式的数据转换成yolo系列数据。经过大量实践验证无bug 源代码:python脚本 适合人群:学生、具备一定编程基础,工作1-3年的研发人员、想入门人工智能的爱好者、科研人员 能学到什么:可以快速出效果。节省你的时间 备注:如遇问题,随时联系我。
kaggle项目House Prices的训练集和测试集
2022-06-18 21:36:19 146KB Kaggle House Prices 训练集
1
泰坦尼克号生存分类数据集 包括训练集和测试集两个csv文件
2022-05-24 22:33:06 6KB 数据集
1