针对传统图像渲染方法费时、复杂,无法满足现代设计应用场景的问题,利用人工智能技术中的卷积神经网络进行了图像自动渲染的研究。图像自动渲染算法主要分为两个部分:素材图像的特征提取与虚拟视图的渲染。通过卷积神经网络识别场景中图像的位移、缩放与其他形式扭曲不变性的二维图形轮廓,进而构建特征表征网络,用以提取图像特征并使之融合。同时,采用基于计算逻辑的图像校正算法来对齐不同视角所生成的虚拟视图,最终设计两层编码器-三层解码器的虚拟图像自动渲染模型。测试结果表明,所提出的图像自动渲染方法具有相对稳定的峰值噪声比与结构相识性,可以有效识别图像的特征并进行虚拟视图的渲染。
1