dnn训练matlab代码世贸组织 无线移动边缘计算中用于计算速率最大化的深度神经网络 Python代码可重现我们在无线移动边缘计算[1]上的工作,该技术使用无线通道增益作为输入,将二进制计算模式选择结果用作深度神经网络(DNN)的输出。 这包括: :WPMEC的DNN结构,包括培训结构和测试结构 :所有数据都存储在此子目录中,包括: data _#。mat :培训和测试数据集,其中#是用户号 Prediction _#。mat :DNN_test生成的预测模式选择 weights_biases.mat :受训DNN的参数,可用于在MATLAB中重现此受训DNN。 :运行此文件,包括设置系统参数 关于我们的作品 请参阅发布于的关于此主题的最新优势。 具体而言,提出了一种基于强化学习的在线算法,以最大化无线移动边缘计算网络中的加权计算速率。 数值结果表明,与现有的优化方法相比,所提出的算法可以达到近乎最佳的性能,同时将计算时间显着减少了一个数量级以上。 例如,在30个用户的网络中,DROO的CPU执行等待时间小于0.1秒,即使在快速衰落的环境中,实时和最佳的泛滥也切实可行。 Huang
2021-10-12 12:39:04 19.69MB 系统开源
1
为实现车辆终端用户任务执行时延与处理速率、能耗的最佳均衡关系,针对车联网的边缘接入环境,提出了一种基于深度 Q 网络(DQN)的计算任务分发卸载算法。首先根据层次分析法对不同车辆终端的计算任务进行优先级划分,从而为计算任务处理速率赋予不同的权重建立关系模型;然后引入基于深度Q网络的边缘计算方法,以计算任务处理速率加权和为优化目标建立任务卸载模型;最后建立基于 DQN 的车辆终端自主最优任务卸载策略,最大化卸载决策制定模型的长期效用。仿真结果表明,相比Q学习算法,所提算法有效提高了任务执行效率。
1
原本官方的工具有个别参数被挡到,例如挡住了bps的数值,这边的这个工具已经稍加修改,把那些会挡住的字母去掉,请放心下载。工具可以设置扩频因子、带宽、频率等参数计算出最后的速率和功率,还可以计算发送前导码长度占用时间和数据包整体的时间。
2019-12-21 21:50:00 1.33MB 计算速率 LoRa 计算功率 前导码时间
1