提出了一种特征权值与尺度自适应的核相关跟踪算法。提取目标搜索区域的方向梯度直方图(HOG)特征和颜色名(CN)特征进行自适应权值融合,通过融合特征的相关滤波响应图的峰值找到目标位置;利用权值较大特征的相关滤波响应图的峰值和峰值旁瓣比的乘积作为尺度评估依据,对目标尺度进行粗略估计和精确估计,从而得到目标的最佳尺度。通过在目标跟踪标准(OTB-2013)数据集上的仿真实验,结果表明相比核相关滤波跟踪算法以及其他5种跟踪算法,所提算法在跟踪精度和成功率方面都有明显提高,跟踪精度为0.799,成功率为0.723,能较好地适应目标尺度的变化。
2024-01-24 21:59:42 5.56MB 机器视觉 目标跟踪 特征融合
1
该数据集主要包含自行车、电动车和摩托车,标签都是yolo格式,是经过本人精心挑选及筛选的。博客上也有很多其它数据集资源,但经本人下载后有很多图片的标签有误,甚至压根就不是人工标注的(估计是拿模型直接检测出来的),这个严重影响模型的精度。 数据集图片总数为12811,标签文件名与图片片名一一对应,但是有的标签文件是多余的,不对应图片,训练的时候直接根据图片读标签即可。 标签格式:(类别 id 归一化后的x,y,w,h),其中id均为-1,因为我用这个数据集训练的跟踪模型,所以会有id信息。如果只想训练检测模型,对标签用代码处理以下即可。
为提高相关滤波(CF)跟踪算法的稳健性,并克服传统CF方法无法处理目标尺度变化以及未利用图像颜色特征等问题,提出了一种基于融合颜色特征的尺度自适应相关滤波改进跟踪算法。首先,将目标搜索区域从3原色(RGB)颜色空间转换到Lab颜色空间,提取搜索区域的Lab 3通道颜色特征;然后,融合Lab颜色特征与方向梯度直方图(HOG)特征得到多通道特征,利用核相关滤波(KCF)计算输出响应图并寻找图中最大响应位置即目标位置;最后,基于Lab颜色特征建立尺度模型,从当前帧的目标位置处截取不同尺度图像块,通过将其与尺度模型比较得到目标尺度最优估计。实验选取35段公开彩色视频序列进行测试,并将所提算法与其他5种跟踪性能较好的跟踪方法进行对比。实验结果表明,所提方法对彩色视频序列中的目标遮挡、变形、尺度变化等现象具有良好的适应性,其平均性能优于对比方法,同时具有76 frame·s-1的实时跟踪速度。
2022-04-09 23:53:41 7.47MB 机器视觉 目标跟踪 相关滤波 特征融合
1
Deep Learning for Visual Tracking A Comprehensive Survey.pdf
2022-03-03 00:47:18 8.35MB 计算机视觉 目标跟踪
1
为了提高复杂环境下的目标跟踪精度,提出了一种基于序贯检测机制的双目视觉运动目标跟踪方法.该方法在序贯检测机制下,将粒子滤波、稀疏场主动轮廓和 CamShift 等方法结合.首先用基于颜色特征的粒子滤波,估计最优跟踪窗口;通过跟踪窗口和目标的相似度决定是否采用稀疏场主动轮廓方法,然后由目标轮廓和目标的相似度决定是否需要 CamShift 对轮廓进行修正;最后结合双目视觉的视差信息和标定模型对目标进行定位,引入视差置信区间判据可有效减少噪声影响,提高运动目标定位精度.实验表明本文所提的基于序贯检测机制的目标跟踪方法在摄像机运动-目标运动模式下,在目标有尺度、旋转、视角变化和环境有光照变化等情况下,能对运动目标进行有效地跟踪与定位,并且具有比较好的跟踪和定位精度
2021-11-10 14:58:09 3.87MB 双目视觉 目标跟踪
1
使用自适应相关滤波器的视觉目标跟踪
2021-11-09 17:14:47 29.1MB 自适应滤波 目标跟踪 代码 文章
1
深度学习理论在计算机视觉中的应用日趋广泛,在目标分类、检测领域取得了令人瞩目的成果,但是深度学习理论在目标跟踪领域的早期应用中,由于存在跟踪时只有目标为正样本,缺乏数据支持,对位置信息依赖程度高等问题,因而应用效果并不理想,传统方法仍占据主流地位.近年来,随着技术的不断发展,深度学习在目标跟踪方向取得了长足的进步.本文首先介绍了目标跟踪技术的基本概念和主要方法,然后针对深度学习在目标跟踪领域的发展现状,从基于深度特征的目标跟踪和基于深度网络的目标跟踪两方面重点阐述了深度学习在该领域的应用方法,并对近期较为流行的基于孪生网络的目标跟踪进行了详细介绍.最后对近年来深度学习在目标跟踪领域取得的成果,以及未来的发展方向作了总结和展望.
1
提出了一种基于深度学习的红外与可见光决策级融合跟踪方法。通过建立参数传递模型,从现有基于深度学习的检测模型中抽取指定对象的可见光检测模型,作为红外检测的预训练模型,在采集的红外图像数据集上进行微调训练,得到基于深度学习的红外检测模型。在此基础上,建立了基于深度学习的红外与可见光决策级融合跟踪模型,进行了单波段跟踪与双波段融合跟踪对比实验。结果表明,所提方法跟踪精度和成功率比单波段跟踪均有所提升,具有较好的稳健性。
2021-06-09 10:42:29 10.73MB 机器视觉 目标跟踪 决策级融 双波段
1
otb视频测试集 在多个跟踪算法上的结果
2021-05-30 09:07:22 233.53MB 计算机视觉 目标跟踪
1