深度学习中的目标检测技术是计算机视觉的一个重要分支,它涉及到从图像或视频中识别出感兴趣的目标物体,并对其进行定位的过程。本文将介绍目标检测的深度学习框架,包括Rcnn系列模型,它们是如何工作的,以及一些其他的深度学习架构。 物体检测问题可以概述为计算机视觉中的四个基本任务:图像分类、图像定位、物体检测和物体分割。图像分类旨在识别图片中的主要物体并将其归类到预定义的类别中;图像定位是指在图片中标注出物体的位置;物体检测在图像分类的基础上,需要检测到图片中所有的物体,并给出每个物体的边界框;物体分割则进一步细化,需要逐像素地识别出图像中的物体,并给出准确的轮廓。在无人驾驶领域,这些技术被广泛应用于道路场景的理解,以辅助车辆做出准确的导航和决策。 在目标检测的发展历程中,有一系列的经典算法,如Deformable Parts Model(可变形部件模型),它使用了基于部件的方法来进行物体检测,尤其在2010年Felzenszwalb等人的工作“Object Detection with Discriminatively Trained Part Based Models”中,提出了包括SGD训练方法、NMS(非极大值抑制)和hard example挖掘等技术。这些技术至今仍在使用,对后续的方法产生重要影响。 接下来,Rcnn系列模型在目标检测领域产生了深远的影响。RCNN(Regions with CNN features)是一个里程碑式的工作,它通过区域建议来定位图像中的物体,并使用CNN提取特征进行分类。Fast RCNN通过RoI Pooling改进了特征提取过程,大大提高了效率。Faster RCNN进一步引入了区域建议网络(Region Proposal Network,RPN),实现了端到端的训练,并大幅度提升了检测速度。 在Faster RCNN的基础上,Mask RCNN增加了目标分割的功能,能够同时输出物体的边界框和精确的像素级掩码。这一系列的进展不仅优化了模型的检测速度,也提高了检测精度。除此之外,还有其他的一些模型,例如RFCN(Region-based Fully Convolutional Network),它使用全卷积网络来实现端到端的训练和检测。 PyTorch代码的引入使得深度学习模型的实现变得更加直观和易于操作。在七月在线课程中,将对这些模型框架进行深入的代码讲解,使学员能够更好地理解模型背后的原理以及如何在实际中应用。 除了模型和算法,物体检测的研究还会关注最新的会议论文和进展。比如ECCV(European Conference on Computer Vision)2018会议上的工作,为这一领域的研究人员和实践者提供了新的思路和方向。 在应用方面,目标检测技术在无人驾驶中的应用显得尤为重要。课程将通过无人驾驶这一应用场景,深入探讨物体检测与物体分割技术如何一起工作,并在实际中发挥作用。 在教学方式上,七月在线课程对以往的课程内容进行了更新,使用80%的中文内容,并对授课顺序进行了调整,使得课程内容更加系统和连贯。此外,所有的教学资料都被移植到Google在线幻灯片中,方便学员的学习和复习。 总结来说,深度学习的目标检测技术是计算机视觉领域的一项核心任务,涉及到图像理解的各个方面。从经典的Deformable Parts Model到Rcnn系列模型,再到近年来的Mask RCNN和PyTorch代码实现,目标检测技术一直在快速发展和进步。无人驾驶等实际应用场景对目标检测技术的需求推动了相关技术的研究和应用,使之成为推动人工智能技术发展的重要力量。
2025-03-26 21:53:51 2.99MB 深度学习 目标检测 计算机视觉
1
本数据集为机器视觉道路障碍检测voc格式数据集,主要包含车载视角下道路中的障碍,如汽车行人摩托车,除此之外还有一部分道路中的路障、施工围挡、升降栅栏的数据集,实际训练的话可以再去数据集网站下载补充常见的汽车行人数据集。
2025-03-24 20:18:46 318.25MB 数据集 机器学习 目标检测
1
从huggingface上下载的ResNet50预训练模型,十分泛用,解压后文件名为“resnet50-0676ba61.pth”
2025-02-24 17:45:18 90.77MB 机器视觉
1
记录每一天 让手机成为你的每天生活记录的日记本!按日期来写微博,更直观!选定日期,你可以发布无数条图片或文字微博,可以选择保存在手机私人收藏还是分享到POCO网给好友浏览。 管理每日记录 您在日历表格内选择某一天,管理这一天的全部记录。可以下载您在POCO网上发布的微博到手机, 也可以把手机上为上传到POCO的微博上传到POCO给大家浏览。当然还可以删除你不想要的微博。 去逛广场 去广场栏目逛逛,看看大家记录分享,也可以查看我关注的好友的最新微博记录,了解Ta们的最新动态。 查看记录 查看别人某天的某条微博,看看Ta的分享美图。可以对该条进行回复。 查看用户资料 查看记录时,点击用户头像进入Ta的个人资料,可以加Ta为关注,同时可以查看Ta的全部记录、POCO作品、以及Ta的关注和粉丝。
1
python毕业设计_ 基于深度学习的视觉问答系统源码+文档说明+答辩PPT.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,确保可以运行! python毕业设计_ 基于深度学习的视觉问答系统源码+文档说明+答辩PPT.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,确保可以运行!python毕业设计_ 基于深度学习的视觉问答系统源码+文档说明+答辩PPT.zip个人经导师指导并认可通过的高分毕业设计项目,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者。也可作为课程设计、期末大作业。包含全部项目源码、该项目可以直接作为毕设使用。项目都经过严格调试,确保可以运行!python毕业设计_ 基于深度学习的视觉问答系统源码+文档说明+答辩PPT
2025-01-19 21:51:25 2.26MB 毕业设计 深度学习
1
2024年江西省职业院校技能大赛:GZ015-机器人系统集成应用技术(学生赛)赛项(高职组)样题_20241022092345A229.pdf
1
数据集-目标检测系列- 消防车 检测数据集 fire_truck >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-01-07 15:52:37 7.04MB yolo 目标检测 python 计算机视觉
1
基于深度学习的复杂行车环境视觉感知算法研究_屈治华.caj
2024-11-21 14:08:16 5.04MB
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
基于C#对海康VisionMaster 4.2.0进行二次开发,通过此案例可以掌握VisionMaster二次开发以下几个方面的技能 1.环境配置:环境配置,方案加载、执行及保存,渲染及数据结果获取.模块参数配置; 2.流程操作:流程列表获取,流程增删操作,从回调函数获取结果,通讯触发及模块列表获取; 3.Group模块操作:Group导入、导出及执行,获取Group运行结果.Group外部输入图像 每一步开发都有详细代码。
2024-11-14 12:05:30 280.22MB 机器视觉 二次开发 VisionMaster
1