基于深度学习的复杂行车环境视觉感知算法研究_屈治华.caj
2024-11-21 14:08:16 5.04MB
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
基于C#对海康VisionMaster 4.2.0进行二次开发,通过此案例可以掌握VisionMaster二次开发以下几个方面的技能 1.环境配置:环境配置,方案加载、执行及保存,渲染及数据结果获取.模块参数配置; 2.流程操作:流程列表获取,流程增删操作,从回调函数获取结果,通讯触发及模块列表获取; 3.Group模块操作:Group导入、导出及执行,获取Group运行结果.Group外部输入图像 每一步开发都有详细代码。
2024-11-14 12:05:30 280.22MB 机器视觉 二次开发 VisionMaster
1
VisionMaster 4.3.0 二次开发05 方案加载、执行、参数配置、获取结果、获取流程列表、获取模块列表、导入流程、导出流程、删除流程、禁用流程、绑定流程、显示方案、显示执行结果 二开的基本功能都差不多实现了。 想学习海康视觉平台VisionMaster二次开发可以下载看看。源码在项目中都是可以直接用的
2024-11-14 12:00:34 6.38MB
1
双目测距算法实现源码,基于C++和OpenCV实现,处理流程如下: 1.读取相机内参 2.计算立体校正参数 3.计算映射矩阵 4.设置SGBM立体匹配算法参数 5.获取双目相机左右摄像头实时视频数据,并分别保存为左侧、右侧图像 6.对获取的相机图像进行立体校正 7.灰度化 8.基于SGBM算法计算视差图 9.视差图转换为深度图
2024-11-06 18:25:04 133KB 双目测距 立体视觉 OpenCV 立体匹配
1
巴斯勒相机连接软件
2024-11-01 15:52:46 559.36MB
1
《ROS机械臂开发与实践》教学源码,涵盖ROS基础、ROS进阶、机械臂Moveit!、视觉抓取等内容。示例均提供Python与C++实现,适配Kinetic、Melodic、Noetic、ROS2 Humble版本..zip优质项目,资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目。 本人系统开发经验充足,有任何使用问题欢迎随时与我联系,我会及时为你解惑,提供帮助。 【资源内容】:项目具体内容可查看下方的资源详情,包含完整源码+工程文件+说明等(若有)。 【附带帮助】: 若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步。 【本人专注计算机领域】: 有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为你提供帮助,CSDN博客端可私信,为你解惑,欢迎交流。 【适合场景】: 相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可以基于此项目进行扩展来开发出更多功能 【无积分此资源可联系获取】 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。积分/付费仅作为资源整理辛苦费用。
2024-10-23 14:56:39 11.24MB
1
艾科瑞特科技:计算机视觉-通用版垃圾分类图像分类(265种类别) 关键词:目标检测、目标跟踪、图像识别、图像分类、自然语言处理、自然语言分析、计算机视觉、人工智能、AIGC、AI、大模型、多模态大模型、API、Docker、镜像、API市场、云市场、国产软件、信创 内容摘要: 基于265类生活垃圾标签体系和15万张图片数据的垃圾分类图像分类模型,具有广泛的应用场景。 居民小区垃圾分类指导:提供实时图像识别与分类建议。 公共场所垃圾投放指引:协助公众正确分类投放垃圾。 环卫工人垃圾收集辅助:快速识别与分拣不同种类垃圾。 城市管理部门垃圾监管:利用图像识别进行垃圾分类情况分析。 教育机构环保教学:利用垃圾分类图像进行科普教育。 社区宣传活动:展示不同垃圾种类的识别与分类方法。 垃圾处理厂分拣系统:自动化识别与分类垃圾,提高处理效率。 垃圾分类APP开发:为用户提供垃圾分类查询与指导服务。 垃圾分类竞赛与游戏:通过图像识别技术增强娱乐与教育性。 回收站点垃圾收集:精确分类回收各类可回收垃圾。 家庭垃圾分类助手:帮助家庭成员正确分类生活垃圾。 餐饮行业垃圾分类管理:确保厨余垃圾得到妥善处理。
2024-10-17 12:35:08 1.32MB 计算机视觉
1
人工智能AI进阶 人工智能课件 课外拓展10阶段十 CV基础+项目更新.rar 17.4GB 课外拓展09阶段九 阶段五NLP基础补充视频.rar 542.9MB 课外拓展08阶段八 阶段四深度学习基础补充视频.rar 531.7MB 课外拓展07阶段七 阶段三 机器学习更新.rar 3.1GB 课外拓展06阶段六 阶段二 Python高级更新.rar 8.6GB 课外拓展05阶段五 阶段一 python基础更新.rar 6.5GB 课外拓展04阶段四 入学第一课.rar 0.0MB 课外拓展03阶段三 赠送-文本摘要项目.rar 4.2GB 课外拓展02阶段二 赠送-人脸支付.rar 2.9GB 课外拓展01阶段一 HR面试技巧.rar 619.3MB 主学习路线07阶段七 人工智能面试强化赠送.rar 5.3GB 主学习路线06阶段六 人工智能项目实战.rar 22.7GB 主学习路线05阶段五 NLP自然语言处理.rar 10.2GB 主学习路线04阶段四 计算机视觉与图像处理.rar 10.6GB 主学 ### 人工智能AI进阶课程概览 #### 一、课程背景及目标 本课程旨在为学员提供一个系统性的人工智能(AI)学习路径,帮助学员掌握从基础到进阶的各项关键技术,包括但不限于Python编程、机器学习、深度学习、计算机视觉(CV)、自然语言处理(NLP)等领域。通过丰富的理论知识讲解与实践项目操作相结合的方式,让学员能够将所学应用于实际工作中。 #### 二、课程结构与内容概述 **1. 主学习路线** - **主学习路线07阶段七:人工智能面试强化** - 内容规模:5.3GB - 内容概述:针对求职者设计的一套全面复习材料,涵盖AI领域的面试题型、答题技巧及常见问题解析等,帮助学员提高面试成功率。 - **主学习路线06阶段六:人工智能项目实战** - 内容规模:22.7GB - 内容概述:一系列真实世界中的AI项目案例分析与实践,覆盖多个应用场景和技术领域,如推荐系统、自动驾驶等。 - **主学习路线05阶段五:NLP自然语言处理** - 内容规模:10.2GB - 内容概述:深入探讨NLP技术的基础原理及其在聊天机器人、情感分析等场景中的应用。 - **主学习路线04阶段四:计算机视觉与图像处理** - 内容规模:10.6GB - 内容概述:聚焦于CV领域的核心技术与算法,包括图像识别、目标检测、图像分割等内容,并结合实例进行讲解。 **2. 课外拓展资料** - **课外拓展09阶段九:阶段五NLP基础补充视频** - 内容规模:542.9MB - 内容概述:作为对主学习路线中NLP部分的补充,这些视频提供了更深层次的技术细节介绍。 - **课外拓展08阶段八:阶段四深度学习基础补充视频** - 内容规模:531.7MB - 内容概述:深化对深度学习的理解,涵盖了神经网络的基本概念以及如何构建和优化深度学习模型的方法。 - **课外拓展07阶段七:阶段三机器学习更新** - 内容规模:3.1GB - 内容概述:最新的机器学习教程,包括监督学习、无监督学习等多种学习方法的最新进展。 - **课外拓展06阶段六:阶段二Python高级更新** - 内容规模:8.6GB - 内容概述:Python编程语言高级用法的集合,包括面向对象编程、高级数据结构、异步编程等内容。 - **课外拓展05阶段五:阶段一python基础更新** - 内容规模:6.5GB - 内容概述:适合初学者的Python基础教程,介绍了变量、数据类型、控制结构等基础知识。 - **课外拓展04阶段四:入学第一课** - 内容规模:0.0MB - 内容概述:简短的介绍性课程,帮助学员快速了解整个学习路径的结构和规划。 - **课外拓展03阶段三:赠送-文本摘要项目** - 内容规模:4.2GB - 内容概述:一个完整的文本摘要项目案例,涉及文本预处理、特征提取、模型训练等多个环节。 - **课外拓展02阶段二:赠送-人脸支付** - 内容规模:2.9GB - 内容概述:基于计算机视觉技术的人脸识别和支付系统开发教程,包括硬件选型、软件实现等方面。 - **课外拓展01阶段一:HR面试技巧** - 内容规模:619.3MB - 内容概述:专为技术岗位求职者准备的面试技巧指南,包括简历撰写、面试流程、沟通技巧等内容。 #### 三、总结 通过上述详细的课程结构与内容介绍,可以看出该课程体系覆盖了人工智能领域的各个方面,既注重基础知识的培养,又强调实践技能的提升。无论是对于想要进入AI行业的新人还是希望进一步提升技能的专业人士来说,都是一个非常有价值的学习资源。
2024-10-17 12:27:40 93B 人工智能 计算机视觉 图像处理
1
"计算机视觉与图像处理论文实用全套PPT" 计算机视觉是一种模拟人类视觉的技术,它可以通过对图像或视频的处理来获取相应的三维信息,并存储于计算机中供人们研究和应用。近年来,计算机视觉的研究与应用已经扩展到了空間探索、地理资源勘探、工业、农业、医学和军事等多个领域,尤其是在农业工程领域更为突出。 论文的主要内容包括计算机视觉在农业工程中的应用,例如农产品的分级检测、作物营养的监测和病虫草害的防治等方面的研究。同时,论文还讨论了计算机视觉在农业工程中的存在的问题和未来的发展方向。 在农产品的分级检测方面,计算机视觉技术可以对产产品进行无接触检测,获取大量的图像参数信息,并具有标标准统一、识别率高、效率高且无损害等优点,特别适合于动植物等农产品质量的检测和综合评定。 云南农业大学的宋兰霞等人在“云南省农业科技创新工程项目”中,以计算机视觉技术为基础,针对传统方法的主观性强、准确率低、成本高的缺点,运用统计学中的最大方差法去除图像黑色背景,使用二二值法对大理石花纹进行提取,并对其含量进行测定。研究结果表明,计算机视觉技术对实现胴体图像中大理石花纹区域能够分割和含量测定的准确性很高,为肉质自动分级打下良好的基础。 淮阴工学院电电子与电气工程学院的王亚琴等人在“江苏省高校自然科学研究项目”中,提出了基于计算机视觉的鸭蛋重量智能检测方法,实现了计算机视觉称重。该方法首先要构造出鸭蛋图像的灰度梯度共生矩阵,以最大熵原理为依据求出最佳灰度和梯度分割阈值,从而实现二二维阈值的分割。 计算机视觉技术在农业工程中的应用具有很高的准确性和实时性,能够有效地提高农产品的质量和产量,对农业的发展和经济的增长产生积极的影响。 随着计算机视觉技术的发展和应用,农业工程领域也将迎来更多的机遇和挑战。在未来的研究中,需要继续探索和发展计算机视觉技术在农业工程中的应用,以提高农业的生产效率和产品质量。 计算机视觉技术在农业工程中的应用具有很高的潜力和价值,对农业的发展和经济的增长具有重要的意义。
2024-09-29 10:32:39 247KB
1