基于YOLOv8算法的车道线智能检测与识别系统:含标签数据集、模型训练及可化指标的全面解析,十、基于YOLOv8的车道线智能检测与识别系统 1.带标签数据集,BDD100K。 2.含模型训练权重和可化指标,包括F1,准确率,召回率,mAP等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;车道线智能检测;BDD100K带标签数据集;模型训练权重;可化指标;pyqt5界面设计;环境部署说明;算法原理介绍。,基于YOLOv8的智能车道线检测与识别系统:含标签数据集及高效模型训练
2025-04-02 02:54:36 1.24MB
1
图表效果及代码实现讲解链接:https://blog.csdn.net/zhangjiujiu/article/details/142060480 内容概要:利用ECharts的强大功能,加载人体结构svg数据,并且人体器官和条形图进行联动。 适用人群:echarts初学者、数据分析与可化爱好者、svg图形应用开发者。 使用场景:svg图形可化项目、医学领域可化。 目标:掌握ECharts中svg图形配置技巧与定制、条形图和svg图形联动、实战演练前端开发中的数据处理与展示。 在当今的信息时代,数据可化成为分析数据、传递信息的重要手段。ECharts作为一个功能强大的图表库,提供了丰富多样的图表类型,包括常见的折线图、柱状图、饼图等,而它也支持高度可定制的SVG图形。本文将详细介绍如何利用ECharts加载人体结构的SVG数据,并实现与条形图的联动效果,从而在医学领域的可化项目中发挥巨大的作用。 了解ECharts的基本概念对于初学者来说是十分必要的。ECharts是百度开源的一个使用JavaScript实现的开源可化库,它可以在各种设备上流畅运行,并且配置简单、扩展灵活。ECharts提供了多种内置图表类型,并允许用户自定义图表的外观和行为。 在本文所介绍的案例中,我们将重点关注如何将人体结构的SVG数据加载到ECharts中。SVG(Scalable Vector Graphics)是一种基于XML的图像格式,用于描述二维矢量图形。在数据可化中,SVG图形因其良好的可缩放性和高质量渲染而受到青睐。特别是在需要展示复杂结构如人体器官时,SVG可以精确地展现细节,而不会失真。 通过链接提供的文章,我们可以学习到具体的实现方法。需要获取人体器官的SVG数据,这些数据可以是通过图形设计软件绘制的矢量图形,也可以是从其他开源项目中获取的。一旦有了SVG数据,接下来就是在ECharts中配置这些图形,使其成为图表的一部分。 在ECharts中配置SVG图形,主要涉及到图表的series配置项。通过在series中定义type为'series',并设置对应的SVG数据和图表类型,比如'bar'(条形图),可以实现SVG图形与条形图的联动。具体实现时,我们可以通过绑定事件来改变SVG图形的样式或位置,或根据条形图的数据来动态调整SVG图形的大小和形状,从而达到联动的效果。 该技术尤其适合于那些希望在医学教育、疾病诊断、健康监测等方面进行数据可化展示的开发者。例如,通过将人体器官的SVG图形与相关的医学数据结合起来,可以直观地展示不同器官的功能状态,以及疾病对各器官的具体影响。 ECharts配合SVG数据,不仅能够实现丰富的数据可化效果,还能够在特定领域如医学中提供更加直观和专业的展示。对于ECharts初学者、数据分析与可化爱好者和SVG图形应用开发者而言,通过实际案例的学习和实践,可以迅速掌握ECharts中SVG图形的配置技巧,以及如何实现不同图表类型之间的联动,最终达到将复杂数据转化为易于理解的图形展示的目的。
2025-04-01 14:09:04 891KB echarts svg地图 统计分析 数据可视化
1
基于Harry Potter的数据可化数据集,内含2个工作簿,第一个的内容为人物关系的字段,第二个工作簿为人物名字以及他的传记的介绍。详细代码介绍参考https://blog.csdn.net/qq_57329395/article/details/127224354#comments_24427142。通过networkx进行关系图的绘制。 由于networkX是根据edge的关系来绘图,我们需要将关系整理成为元组格式,如('Sirius Black', 'Harry Potter')编号转名字将所有关系保存到列表里即可使用add_edges_from来绘制关系图。 我们拿到的数据有两个分页,分页character含有全部的哈利波特全部的人物姓名和id号及任务简介;分页relation含有带有id号的人物关系,但是该分页没有人物的姓名。我们需要整理数据为以下格式:('Sirius Black', 'Harry Potter')。
1
内容概要:本文介绍了一种利用DeeplabV3+模型进行杯与盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
《基于Python的数据分析师招聘岗位人员数据分析与可化》 在当今数据驱动的时代,数据分析师成为了各行各业炙手可热的职位。Python作为一门强大的编程语言,因其易学性、丰富的库支持和广泛的应用领域,成为了数据科学领域的首选工具。本项目旨在通过Python对数据分析师招聘岗位的人员数据进行深度分析和可化,以揭示人才市场的需求趋势、技能要求以及可能的职业发展路径。 我们需要获取相关数据。这通常包括招聘网站上的职位发布信息,如职位名称、工作职责、所需技能、工作经验、学历要求等。这些数据可以通过网络爬虫技术自动抓取,Python中的BeautifulSoup、Scrapy等库能帮助我们高效地完成这一任务。 在数据清洗阶段,我们需要处理缺失值、异常值和重复值。Pandas库提供了强大的数据处理功能,如dropna()、fillna()、drop_duplicates()等函数,可以方便地对数据进行预处理。此外,还需将非结构化文本信息(如职位描述)转化为结构化数据,以便进一步分析。 接着,我们使用统计分析方法探究不同因素之间的关系。例如,可以使用matplotlib或seaborn库进行数据可化,观察学历、工作经验与薪资水平之间的关联;使用groupby()函数分组分析,了解不同城市、行业的职位需求差异。 对于技能要求,我们可以使用词频分析来找出最常见的技能关键词。nltk和spaCy等自然语言处理库可以帮助我们进行文本分析,找出最受雇主青睐的数据分析技能。此外,还可以通过聚类算法(如K-means)对职位进行分类,探索不同类别职位的特征。 在数据可化方面,除了基础的条形图、饼图、直方图外,还可以利用seaborn的pairplot或FacetGrid创建多维散点图,展示数据的分布和关联。此外,热力图可以清晰地展示技能需求的相对频率,而词云则直观地展现职位描述中的高频词汇。 我们可以构建预测模型,如线性回归或决策树,预测未来数据分析师的市场需求和薪资趋势。这有助于求职者和企业做出更明智的决策。 总结,本项目运用Python进行数据分析师招聘岗位的数据挖掘,通过分析和可化揭示了人才市场的动态,为求职者提供了就业指导,为企业的人才招聘策略提供了数据支持。Python的强大功能使得这个过程既高效又深入,充分体现了数据科学在人力资源管理中的价值。
2025-03-27 15:02:37 306KB
1
用VC6.0编写中间代码/目标代码生成时,出了一个L1089的错误,实在解决不了,所以只好拿VC2008做后续的开发了。不能用的,敬请见谅。 SNL语言,是我学校为了方便编译原理实验的教学,而自定义的一门类pascal语言。这个语言相当简单,但也实现了一门语言的所有功能。 我这个编译器是完全自己编写的。在编写的过程中大量采用了软件工程的思想。程序框架清晰。实现了从SNL语言源代码到中间代码/目标代码(8086汇编代码)的所有编译功能。实现得还是相当的完善的。
2025-03-26 22:46:00 9.73MB
1
随着网上购物的盛行,淘宝、京东、拼多多等互联网商业巨头也展开了激烈的竞争,其中市场竞争最为激烈。收集商品、评论及销量数据以及对各种商品及用户的消费场景进行分析成了必不可少的环节。然而传统的人工收集并整理数据显然效率不足以满足当下各大公司以及其他相关产业对这些数据的需要。近年来Python爬虫技术的逐渐成熟,给网购数据收集并整理带来了极大的便利。基于爬虫技术获取的数据设计并实现基于Python的电商产品数据处理与可分析系统。 该系统具有数据采集,数据清洗,数据分析,数据可化等功能,使用Python爬虫进行数据采集,通过Pandas进行数据清洗,最后利用Seabor进行对商品销量、价格、品牌等数据的可化与统计,进而实现Python的数据分析系统。
2025-03-26 15:44:40 42KB python
1
基于博途1200 PLC与HMI六层三部电梯控制系统的深度仿真工程:实现集群运行、多种模式控制与可化操作,基于博途1200 PLC与HMI六层三部电梯控制系统仿真程序:集选控制与多模式模拟的协同实现,基于博途1200PLC+HMI六层三部电梯控制系统仿真 程序: 1、任务:PLC.人机界面控制三部电梯集群运行 2、系统说明: 系统设有上呼、下呼、内呼、手动开关门、光幕、检修、故障、满载、等模拟模式控制, 系统共享厅外召唤信号,集选控制三部电梯运行。 六层三部电梯途仿真工程配套有博途PLC程序+IO点表 +PLC接线图+主电路图+控制流程图, 附赠:设计参考文档(与程序不是配套,仅供参考)。 博途V16+HMI 可直接模拟运行 程序简洁、精炼,注释详细 ,关键词:博途1200PLC; HMI; 电梯控制系统; 集群运行; 模拟模式控制; 共享厅外召唤信号; 集选控制; 程序简洁精炼; 注释详细。,基于博途PLC与HMI的六层三部电梯控制系统仿真程序
2025-03-24 20:23:09 3.91MB paas
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
微博热搜数据可化分析系统 技术框架 python + flask web + mysql + pycharm 角色介绍 普通用户 qqq 123456 模块分析 登录注册 数据爬取 数据清洗 数据可化模块 热门话题排行 热词榜单 话题热度趋势和分布 话题情感指数和趋势 词云 NLP情感分析 小小程序员小小店 相关话题推送 分词主题数据提取 舆情分析 退出模块 数据库weibo_nlp_system 分析原理 我的最爱是动漫,你喜欢什么呢? 我 的 最爱 是 动漫 你 喜欢 什么 呢
2025-03-08 20:26:10 12.11MB python flask mysql pycharm
1
服务器状态检查中...