内容概要:本文详细介绍了TCN-BiGRU-Attention模型在西储大学轴承故障诊断分类预测中的应用。文章首先介绍了附带的处理好的轴承数据集及其便捷使用的优点,接着深入解析了模型的三个核心组件:TCN残差模块、BiGRU层和单头注意力机制。TCN通过堆叠3层残差模块,利用扩张卷积获取更大的输入序列感受野,避免梯度问题;BiGRU通过正反向处理输入序列,增强特征依赖关系的捕捉;注意力机制则通过对重要特征加权,提高分类准确性。此外,文章提供了详细的Matlab代码示例,帮助读者理解和实现该模型。最后,文章强调了该模型对新手友好的特点,以及在实际应用中的灵活性和适应性。 适合人群:对故障诊断感兴趣的初学者和有一定编程基础的研究人员。 使用场景及目标:适用于需要快速验证轴承故障数据质量和进行分类预测的场景,旨在帮助用户理解并应用TCN-BiGRU-Attention模型进行故障诊断。 其他说明:文中提供的代码为示意代码,实际应用需根据具体需求和Matlab环境进行调整和完善。
2025-07-20 23:21:01 812KB
1
基于TCN-BiGRU-Attention的西储大学故障诊断分类预测:内置Matlab代码与处理好的轴承数据集,实现一键创新体验,《基于TCN-BiGRU-Attention的西储大学故障诊断分类预测:Matlab代码及处理好的轴承数据集一键实现》,TCN-BiGRU-Attention一键实现西储大学故障诊断分类预测 附赠处理好的轴承数据集 Matlab 代码直接附带了处理好的西储大学轴承数据集,并且是Excel格式,已经帮大家替到了程序里 你先用,你就是创新 多变量单输出,分类预测也可以加好友成回归或时间序列单列预测,分类效果如图1所示~ 1首先,通过堆叠3层的TCN残差模块以获取更大范围的输入序列感受野,同时避免出现梯度爆炸和梯度消失等问题每个残差块具有相同的内核大小k,其扩张因子D分别为1、2、4。 2其次,BiGRU获取到TCN处理后的数据序列,它将正反两个方向的GRU层连接起来,一个按从前往后(正向)处理输入序列,另一个反向处理。 通过这种方式,BiGRU可以更加完整地探索特征的依赖关系,获取上下文关联。 3最后,加入单头注意力机制,其键值为2(也可以自行更改),经全连接层
2025-07-20 23:19:43 676KB 哈希算法
1
内容概要:本文介绍了一种用于西储大学轴承故障诊断的深度学习模型——TCN-BiGRU-Attention。该模型由三个主要部分组成:TCN(Temporal Convolutional Network)残差模块用于提取时间序列特征,BiGRU(Bidirectional Gated Recurrent Unit)用于捕捉双向上下文信息,以及Attention机制用于增强重要特征的影响。文中详细描述了各部分的具体实现方法,包括数据预处理步骤、模型架构设计、参数选择及其优化技巧。此外,还提供了完整的Matlab代码和处理好的轴承数据集,方便用户快速上手并进行实验验证。 适合人群:对机械故障诊断感兴趣的科研人员、工程师及学生,尤其是有一定Matlab编程基础和技术背景的人群。 使用场景及目标:适用于需要对机械设备进行故障检测和分类的应用场合,旨在帮助用户理解和应用先进的深度学习技术来提高故障诊断的准确性。具体目标包括但不限于掌握TCN-BiGRU-Attention模型的工作原理,学会利用提供的代码和数据集进行实验,以及能够根据实际情况调整模型配置以适应不同的应用场景。 其他说明:虽然该模型在特定数据集上表现良好,但作者强调不同数据集可能需要针对性的数据预处理和特征工程,因此建议使用者在实际应用中充分考虑数据特性和模型局限性。
2025-07-20 23:19:20 1.03MB
1
西储大学数据集连续小波变换时频分析图像的知识点主要包括以下几个方面: 美国凯斯西储大学(Case Western Reserve University,简称CWRU)在多个领域拥有世界领先的科研实力,包括生物医学工程、材料科学、电机工程等。该大学的数据集是围绕上述领域研究过程中收集的大量实验数据,这些数据集被广泛用于模式识别、数据分析、机器学习等领域。 连续小波变换(Continuous Wavelet Transform,CWT)是时间频率分析的一种有效工具,可以用于提取信号在不同时间和频率上的信息。与傅里叶变换相比,小波变换能够提供更精细的时频局部化特性,尤其适合于分析非平稳信号。在处理CWRU数据集时,连续小波变换能够帮助研究者捕捉到信号在各个时刻的频率变化情况,为研究信号的动态特性提供了便利。 通过连续小波变换技术,可以将CWRU数据集转换成时频图像数据集。时频图像是一种可视化技术,它通过颜色深浅或亮度来表示信号在不同时间和频率上的能量分布。这种图像使得复杂信号的时间和频率特征变得直观,便于分析和解释。在电机系统故障诊断、生物医学信号分析等领域,时频图像能够辅助专业人员识别信号的异常变化,从而进行有效的故障检测和诊断。 生成时频图像数据集的过程需要专业的数据分析软件和编程工具,比如MATLAB或者Python的scipy和numpy库。在数据处理过程中,需要对原始信号进行预处理,如去除噪声、滤波等,以确保小波变换结果的准确性。接着,选择合适的小波基函数对信号进行连续小波变换,并绘制出时频图像。 根据上述文件信息,压缩包内的文件名暗示了数据集的来源和处理步骤。其中,“1747739956资源下载地址.docx”可能包含着下载西储大学数据集的详细信息,如网址、数据集的结构和内容描述,以及可能需要的访问权限和密码等。文件“doc密码.txt”则可能包含了打开或访问上述文件的密码信息,这些信息对于获取和处理数据集至关重要。 将这些时频图像数据集用于科研和工程实践中,可以帮助工程师和科学家们更好地理解复杂的信号处理问题,提高问题解决的效率和准确性。时频分析图像不仅在学术研究领域有着重要的应用价值,也在工业生产、医疗诊断、环境监测等多个实际领域中发挥着越来越大的作用。
2025-07-06 10:33:29 51KB
1
美国凯斯西储大学(CWRU)数据集:文件名称为数据集类型缩写,便于文件检索
2024-02-08 17:03:44 234.44MB 故障诊断 数据集 深度学习 机器学习
1
变分模态分解(Variational Mode Decomposition,VMD)是由 Dragomiretskiy 等人提出的一种自适应信号处理方法,通过迭代搜寻变分模态 的最优解,不断更新各模态函数及中心频率,得到若干具有一定宽带的模态函数。利用VMD对凯斯西储大学轴承进行信号分解,效果较好,可作为对比实验。
1
美国凯斯西储大学轴承数据中心全部数据 附带说明文档 CWRU数据集
2023-01-03 19:58:42 138.54MB CWRU 数据集 凯斯西储大学 轴承
1
这个是西储大学轴承数据中心的全部数据,是做轴承数据分析和故障诊断的经典测试数据,以前找半天都要积分,终于有一天我写代码全下下来了,这次上传的是代码 官网地址 https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
2022-11-18 16:03:36 10KB 轴承数据
1
区分3个工况,DE端数据按照2048个点一个样本,128个点步长进行滑窗取值获得,而后使用小波变换形成时频图,图片大小192×192
2022-11-12 11:30:33 127.92MB 西储大学轴承故障数据集
1
小波降噪,运用小波工具将图像进行分层处理,可以得到降噪后的图像,含有凯斯西储大学轴承数据
1