本文提出了一种使用OPENBCI收集两个手势数据并解码信号以区分手势的实验。 用受试者前臂上的三个电极提取信号,并在一个通道中传输。 利用巴特沃斯带通滤波器后,我们选择了一种新颖的方法来检测手势动作段。 代替使用基于能量计算的移动平均算法,我们开发了一种基于Hilbert变换的算法来找到动态阈值并识别动作段。 从每个活动部分提取了四个特征,生成了用于分类的特征向量。 在分类过程中,我们基于相对较少的样本对K最近邻(KNN)和支持向量机(SVM)进行了比较。 最常见的实验是基于大量数据来追求高度拟合的模型。 但是在某些情况下,我们无法获得足够的训练数据,因此必须探索在小样本数据下进行最佳分类的最佳方法。 尽管KNN以其简单性和实用性而闻名,但它是一种相对耗时的方法。 另一方面,由于支持向量机应用了不同的风险最小化原则,因此在时间要求和识别准确性方面具有更好的性能。 实验结果表明,SVM算法的平均识别率比KNN高1.25%,而SVM比KNN短2.031 s。
2022-08-25 23:04:11
719KB
行业研究
1