将结构光三维检测方法应用于钢轨生产过程中的表面缺陷三维检测,通过在钢轨四周安装4台激光线光源和8台面阵CCD摄像机实现钢轨四个面的检测。对摄像机采集到的激光光带图像进行光带中心提取、光带中心线矫正、光带中心线与基准线的差值等步骤,得到钢轨表面深度的变化值,并将沿钢轨长度方向和高度方向的深度变化值用深度分布图表示,通过两维图像识别的方法检测缺陷所在的区域,从而实现钢轨表面缺陷的自动检测。该方法已经实现在线应用,可以达到的最大检测速度为1.5m/s,深度检测分辨力为0.2mm。
2024-08-16 13:37:47 298KB 工程技术 论文
1
"针对带钢表面缺陷人工检测方法效率低下的问题,设计了一套在线自动检测系统.首先,提出了带钢表面缺陷在线检测系统的总体设计方案,包括系统的硬件结构、软件结构以及图像采集系统.随后,着重研究了在线检测系统中所涉及的图像预处理方法、图像分割方法、特征提取选择和缺陷分类方法.通过缺陷区域频率域图像特征的提取和缺陷的人工神经网络分类,提高了分类结果的准确性.最后,采用常见缺陷的样本对该系统进行测试,实验结果验证了算法的有效性."
2023-12-26 23:46:34 737KB 工程技术 论文
1
在基于图像的轨道检测系统中,光照变化和表面反射特性容易影响轨道表面缺陷的分割效果。本文提出了一种基于背景减法的轨道表面缺陷图像分割算法。其次,为了提高精度,结合相关系数和欧几里得距离来测量像素邻域之间的相似度。然后,利用相似度测量结果确定邻域平均尺度,多尺度建立背景图像模型。最后,通过差分图像的图像差分和设定阈值实现轨道表面缺陷的分割。该方法充分利用了轨道图像中像素邻域之间的相似度信息,并建立了背景图像的精确模型。 因此,该方法可以有效减少照明不均匀的影响和轨道表面的反射特性,同时突出图像中的缺陷区域。实验结果表明,该方法具有良好的效果。对块状缺陷和线性缺陷的分割都产生了影响,这些缺陷在图像中离散分布。
2023-05-11 18:54:43 356KB Rail Surface Defect Similarity
1
钢材表面缺陷检测数据集:NEU-DET 1.包含YOLO模型所需处理好的.txt标签labels文件,已测试; 2.包含所有1800张原始图片及标签xml文件。
2023-03-24 09:59:58 27.04MB NEU-DET 钢材表面检测 YOLO
1
yolov5-pytorch框架做的铁轨表面缺陷系统,里面加pyqt5界面,可做毕业设计
2023-02-19 17:23:00 489.93MB pytorch qt python 人工智能
(钢材表面缺陷)数据集该数据集是东北大学宋克臣团队制作而成,是钢材表面缺陷数据集,共有1800张图片,包含六种类型:crazing、inclusion、patches、pitted_surface rolled-in_scale、scratches 数据说明 ANNOTATIONS:标签 IMAGES:图片 问题描述 钢材表面缺陷数据集
2023-01-05 17:30:23 25.95MB 目标检测数据集
1
钢板表面质量决定钢板的抗腐蚀性、抗磨性和疲劳强度等使用性能,决定相关产品的安全性能。目前还没有一种算法可很好的解决钢板表面缺陷分类问题。应用BP神经网络算法识别钢板表面缺陷,并采用高阶扰动理论解决BP神经网络算法固有的缺点,如学习速度慢、易陷入局部极值等。最后通过实验验证了算法的有效性,钢板缺陷识别率达到83%。
2022-12-30 17:00:17 201KB 自然科学 论文
1
此数据集为东北大学教授所创建的钢材表面缺陷数据集。并且以coco格式做好了数据集的划分,1200张训练集,600张验证集,对应的json文件也在里面
2022-10-22 22:05:32 25.65MB 钢材 表面 缺陷 数据集
1
谁有用拿走吧
2022-10-22 22:05:29 311.04MB 数据集
1