金属纳米材料因其特有的局域表面等离激元共振(LSPR)特性而广泛应用于半导体材料发光、太阳能电池、表面增强拉曼散射探测、光电化学等领域。Ag由于其在特定波段极低的吸收损耗而被视为优秀的LSPR候选材料。以Ag纳米结构作为研究对象, 利用时域有限差分法(FDTD)对圆柱形Ag纳米结构的近场局域增强和远场散射特性进行了系统的模拟与分析。结果表明Ag纳米结构的尺寸、间距及衬底折射率均会对LSPR 效果产生显著影响, 可以通过改变结构参数来调控Ag纳米结构的LSPR特性。
2024-02-20 16:07:53 8.46MB 物理光学 时域有限 physical
1
纳米孔阵列的透射增强现象在许多领域都具有重要的应用和前景。采用时域有限差分(FDTD)方法对金属薄膜纳米孔阵列的透射增强特性进行了模拟研究。针对圆孔半径、薄膜厚度、阵列周期以及不同材料等因素进行了分析,讨论了不同参数条件下透射增强谱线的变化规律。研究表明大的圆孔半径和薄的薄膜厚度有利于提高透射性能,另外孔阵列周期较大时不利于增强透射。探讨了不同小孔形状对透射增强的影响,并采用矩形孔阵列进行了对比。最后通过改变薄膜材料计算了相应的透射性能。
2023-03-13 10:23:09 589KB 薄膜 透射增强 表面等离 纳米孔阵
1
Kretschmann型激发表面等离子体共振(SPR)膜系结构是探针诱导表面等离子体共振耦合纳米光刻技术(PSPRN)的关键部分之一。采用多层介质的特性矩阵法计算膜系结构的透射系数和反射率,对PSPRN所需的单膜层、双膜层及三膜层膜系结构进行了优化设计。计算结果表明,光波波长为514.5 nm时,对于选定材料的最佳膜系结构是Ag膜厚度为46 nm的单膜层结构,Ag膜厚度为24 nm,AgOx厚度为95 nm的双膜层结构及Ag膜厚度为44 nm,SiO2厚度为180 nm,AgOx厚度为10 nm的三膜层结构,提出了记录层材料应选择折射系数小且吸收系数尽可能小的光刻材料的观点。
2022-11-21 23:11:33 2.74MB 薄膜光学 表面等离 特性矩阵 透射系数
1
21.2 复消色差条件 如在 16.5.1 节中所见,一个消色差的薄透镜有两个限制条件: (21.1) 而复消色差的薄透镜则有三个限制条件:
2022-06-30 14:03:53 4.98MB Zemax初学宝典
1
设计了一种光子晶体光纤(PCF)结构,基于新结构PCF和表面等离子体共振(SPR)效应实现了温度与磁场双参量传感。采用全矢量有限元方法对该传感器的理论模型进行了分析,结果表明,当温度在20~50 ℃内时,传感器的温度灵敏度可达-493.6 pm/℃;当磁感应强度在20~300 Oe内时,传感器的磁场灵敏度可达82.69 pm/Oe。
2022-05-12 11:05:11 7.32MB 传感器 光子晶体 表面等离 磁流体
1
基于表面等离子体共振(SPR)效应, 设计了一种采用双芯结构光子晶体光纤(PCF)作为光波导的横向应力传感器。通过建立SPR耦合波模型和PCF结构的形变模型, 利用全矢量有限元法进行数值模拟, 获得了基模共振峰的偏移量与横向应力的关系。结果表明共振峰波长的偏移量与所施加应力具有很好的线性关系。对PCF的截面结构进行优化设计, 通过选择适当的空气孔层数、直径和周期, 可获得较高的测量灵敏度。该研究可为基于SPR的PCF横向应力传感器的设计提供理论依据。
2022-04-14 13:08:06 6.13MB 传感器 表面等离 光子晶体 应力
1
基于Kretschmann结构,建立了一种具有四层介质的光纤表面等离子体共振(SPR)传感器理论模型。通过仿真可知,当折射率为1.333~1.336时,反射波p、s偏振分量的相位差与折射率呈近似线性的变化关系,并得到了光纤SPR的传感测量公式。实验使用双频He-Ne激光器作为光源,提出了一套基于共光路结构的外差干涉光纤SPR测量系统,并采用相位解调的信号处理方法,使传感器具有较高的测量分辨率。甘油溶液的实验标定数据表明测量结果与理论分析一致,且结果与采用其他测量方法得到的结果吻合度较好,二者所得折射率的相互误差小于8.0×10 -5。所提传感器可以应用于环境检测、食品安全、药物筛选及临床医学等领域中。
2022-03-26 18:51:56 4.29MB 测量 溶液折射 表面等离 光纤传感
1
以微带为代表的传统微波传输线无法精细操控电磁模式,因此传统电子信息系统在空间耦合、动态响应和性能鲁棒性等方面存在瓶颈。人工表面等离激元(SSPP)超材料可打破上述瓶颈,是光学与信息领域的研究热点之一。人工表面等离激元超材料是一类模拟光频段表面等离激元特性的新型超材料,可在微波和太赫兹频段精细操控表面波,具有与平面电路相似的构型特性,可用于制备下一代集成电路的基础传输线。人工表面等离激元分为传输型和局域型两类。传输型人工表面等离激元超材料始于三维立体结构,后发展成超薄梳状金属条带构型。学者们构建了以其为基础的微波电路新体系,研制了人工表面等离激元滤波器、天线、放大器和倍频器等典型的无源和有源器件,并将其集成为可实现亚波长间距多通道信号非视距传输的无线通信系统。人工局域表面等离激元(SLSP)超材料也经历了从三维立体构型到超薄构型的发展历程,并通过螺旋构型、链式构型、高阶模式和杂化模式等为电磁波的亚波长尺度调控提供了更多自由度。系统讨论了人工表面等离激元超材料在微波电路中的相关理论和应用,包括人工表面等离激元超材料的基本概念、构型发展、无源/有源器件以及无线通信系统。
2021-12-19 22:14:04 37.38MB 表面光学 超材料 人工表面 人工局域
1
硅基光电子调制器件研究进展,龚翰墨,李强,硅基光电子调制器件是硅光子学领域中不可或缺的部分,近年来得到学者们的关注。基于硅的非线性效应可实现对于通信波段信号光的调
2021-12-07 17:55:18 554KB 表面等离激元
1
在AgNO3溶液中超声辐照石英基板,然后在200至800摄氏度之间的高温(T-a)在氮气气氛中进行后退火。超声波和热处理。 观察到由Ag团簇上的局部表面等离子体激元(LSP)诱导的吸收光谱。 最突出的吸收发生在Ta = 400摄氏度。从Ta = 200到400摄氏度,SiO2上的AgNO3经历热分解,Ag团簇形成和成熟。 从Ta = 600至800℃,形成Ag氧化物纳米环。 将LSPs应用于掺杂Si纳米晶体的SiO2(Si-NC:SiO2)薄膜可增强Si-NCs的光致发光(PL),在Ta = 400摄氏度下可获得最大3.6倍的增强。PL增强归因于LSP场耦合到Si-NC的激子偶极矩。
2021-11-08 10:33:42 1.55MB Surface plasmon; Silicon nanocrystal;
1