在现代电力电子技术领域中,Fly-Buck转换器是一种广泛应用于隔离型电源的拓扑结构,它能够在输入和输出之间提供电气隔离,同时保持高效率和高功率密度。Fly-Buck转换器的核心在于其能够利用变压器进行能量传递,并通过一个简单的反馈机制来控制输出电压。在本文中,我们将详细探讨反馈补偿电路在Fly-Buck转换器中的应用,并分析其对二次侧稳压效果的改善。 我们需要了解Fly-Buck转换器的基本工作原理。Fly-Buck是一种基于反激式转换器原理的拓扑,它通过在变压器的一次侧和二次侧之间引入一个电感来实现能量的耦合和传输。在Fly-Buck转换器中,一次侧和二次侧的电压关系是通过变压器的匝数比来确定的。然而,由于元件的非理想特性,实际应用中会出现输出电压的偏差,这需要通过引入反馈补偿电路来校正。 反馈补偿电路的作用在于监控输出电压,并通过反馈环路的控制机制来调整Fly-Buck转换器的工作状态,以保证输出电压的稳定。通常,反馈电路包含反馈网络和误差放大器两个部分。反馈网络用于隔离反馈信号并确定反馈补偿电路的频率特性,而误差放大器则用于放大反馈信号中的误差电压,提供必要的增益来调整输出电压。 在本文中提到的特定案例中,外部补偿电路利用了光耦合器来实现反馈隔离,而并联稳压器LM431A则被用作误差放大器。光耦合器是一种能够提供电气隔离的元器件,它通过光信号传递信息,从而避免了电路中的直接电气连接,这对于隔离式电源系统而言至关重要。LM431A是一款可控基准电压源,它能够提供稳定的基准电压,并具备较高的放大能力,这使得它非常适合用作误差放大器。 此外,本文中提到的典型I类补偿网络由电容C1和电阻R1组成,它具有确定反馈补偿电路截止频率的作用。I类补偿网络能够提供高直流增益,从而减少低频时的稳压误差。通过适当选择电容和电阻的值,可以设定反馈补偿电路的频率响应特性,从而优化整体转换器的性能。 在Fly-Buck转换器的实际应用中,反馈补偿电路的效果非常显著。通过引入补偿电路,二次侧输出电压的稳定性得到了显著改善。在原型LM5017电路中,二次输出电压在不同负载条件下出现了负梯度,而添加补偿电路后,这种现象得到了有效控制。随着输入电压的变化,二次输出电压能够更接近其额定值,这表明补偿电路对于改善输出电压的稳压性能有明显的效果。 需要注意的是,虽然二次侧的稳压性能得到了改善,但是这种改善是以牺牲一次侧输出稳压性能为代价的。这是因为Fly-Buck转换器中一次侧和二次侧的输出电压基本关系是相互依赖的,一次侧的稳定直接影响二次侧的输出。因此,在设计反馈补偿电路时,必须考虑这种相互影响,并且在实际应用中需要在一次侧和二次侧之间找到一个平衡点。 反馈补偿电路对于提高Fly-Buck转换器的稳压性能至关重要,尤其是在二次侧输出电压稳定性要求较高的应用场合。通过合理设计反馈补偿电路,不仅可以提升电源系统的性能指标,还能有效地满足用户对电源品质的需求。在进行相关设计和应用时,工程师们需要充分考虑转换器的特性,以及反馈补偿电路与电源系统整体性能之间的相互作用,以确保电路能够达到预期的性能目标。
2025-09-05 22:25:08 226KB LM5017 Fly-Buck 课设毕设
1
峰值电流模升压变换器的自适应斜坡补偿电路设计,汪倩,陈文韬,设计了一种适用于峰值电流模升压DC-DC变换器的自适应斜坡补偿电路。利用吉尔伯特单元的传输特性将输入输出电压转化为斜坡电流,使�
2023-04-11 11:24:17 485KB 电流模升压DC-DC变换器
1
对开关电源设计中反馈补偿网络的设计进行了较为仔细的讲述,内容深入浅出
2023-03-26 12:09:33 1.6MB 开关电源
1
引言  开关电源是利用现代电力电子技术,控制开关晶体管的导通和关断的时间比率,维持输出电压稳定的一种电源,它和线性电源相比,具有效率高、功率密度高、可以实现和输人电网的电气隔离等优点,被誉为离效节能电源M目前开关电源已经应用到了各个领域,尤其在大功率应用的场合,开关电源具有明显的优势。  开关电源一般由脉冲宽度控制(PWM)IC、功率开关管、整流二极管和LC滤波电路构成。在中小功率开关电源中,功率开关管可以集成在PWM控制IC内。开关电源按反馈方式分为电压模式和电流模式。电流模式开关电源因其突出的优点而得到了快速的发展和广泛的应用。但是电流模式的结构决定了它存在两个缺点:恒定峰值电流而非恒定平
1
压力传感器的输出会受到温度的影响。文中从理论上分析了在恒压供电和恒流供电条件下压力传感器随温度变化的输出特性,通过实验测量了在不同温度下压力传感器的输出大小。实验结果表明,对比两种供电方式下传感器的输出,恒流供电时压力传感器输出更加趋于稳定。但是压力传感器的输出仍然存在温漂,对此,提出了一种简单的补偿电路,采用NSA2860芯片进行温度补偿,通过对比补偿前与补偿后的温度实验,使得压力传感器的输出误差从2.14%降低到了0.52%。
1
热电偶冷端温度补偿电路 热电偶冷端温度补偿电路 当热端温度为t时,分度表所对应的热电势eAB(t, 0)与热电偶实际产生的热电势eAB(t,t0)之间的关系可根据中间温度定律得到下式: eAB(t,0)= eAB(t,t0)+eAB(t0,0) 由此可见,eAB(t0,0)是冷端温度t0的函数,因此需要对热电偶冷端温度进行处理。 热电偶实用测温电路 在实验室及精密测量中,通常把冷端放入0℃恒温器或装满冰水混合物的容器中,以便冷端温度保持0℃。 这是一种理想的补偿方法,但工业中使用极为不便。 1.冷端0℃恒温法 热电偶实用测温电路 当冷端温度t0不等于0℃,需要对热电偶回路的测量电势值eAB(t,t0)加以修正。当工作端温度为t时,分度表可查eAB(t,0)与eAB(t0,0)。 根据中间温度定律得到: 2.温度修正法 eAB(t,0)= eAB(t,t0)+eAB(t0,0) 热电偶实用测温电路 例:用镍铬-镍硅热电偶测量加热炉温度。已知冷端温度t0=30℃,测得热电势eAB(t,t0)为33.29mV, 求加热炉温度。 解:查镍铬-镍硅热电偶分度表得eAB(30,0)1.203 mV
2022-05-22 09:09:27 411KB 文档资料 传感器
热电偶补偿电路,涉及温度传感的可以参考一下
2022-02-19 17:05:03 205KB 热电偶 补偿电路
1
此报告经过本人制作与撰写,内容充分而具体,思路简洁。是2012年TI杯电子设计竞赛试题。
2021-12-26 19:11:45 154KB 频率补偿 设计报告
1
利用动态密勒补偿电路解决LDO 的稳定性问题
2021-12-22 15:14:57 47KB LDO 米勒补偿
1