提出一种结合群体交互信息和个体运动信息的生成对抗网络GI-GAN。首先,利用编码层中的双向长短期记忆网络BiLSTM提取观测时段内所有行人自身的运动行为隐藏特征;其次,基于双注意力模块,计算与轨迹生成关联度较高的个体运动信息和群体交互信息;最后,利用生成对抗网络进行全局联合训练,获得反向传播误差和各层的合理网络参数,解码器利用已获取的上下文信息生成多条合理预测轨迹。实验表明,与S-GAN模型相比,GI-GAN模型的平均位移误差和绝对位移误差分别降低了8.8%和9.2%,并且预测轨迹具有更高的精度和合理多样性。
1