网络安全_卷积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
实时驾驶行为识别与驾驶安全检测-实现了开车打电话-开车打哈欠的实时识别 实现开车打电话和开车打哈欠的实时识别,对于提升驾驶安全具有重要意义。下面将简要介绍如何构建这样一个系统,并概述代码运行的主要步骤。请注意,这里不会包含具体代码,而是提供一个高层次的指南,以帮助理解整个过程。 #### 1. 环境搭建 - **选择操作系统**:推荐使用Linux或Windows,确保有足够的计算资源(CPU/GPU)来支持深度学习模型的运行。 - **安装依赖库**:包括Python环境、PyTorch或TensorFlow等深度学习框架、OpenCV用于图像处理、dlib或其他面部特征检测库等。 - **获取YOLO模型**:下载预训练的YOLO模型,或者根据自己的数据集进行微调,特别是针对特定行为如打电话、打哈欠的行为特征。 #### 2. 数据准备 - **收集数据**:收集或创建一个包含驾驶员正常驾驶、打电话和打哈欠等行为的数据集。每个类别应该有足够的样本量以确保模型的学习效果。 - **标注数据**:对数据进行标注,明确指出哪些帧属于哪种行为。可以使用像LabelImg这样的工具
2025-04-27 08:38:09 84.83MB 驾驶行为 打电话检测
1
课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 转头(probe)+低头(peep)+传递物品(passing) 课堂专注度+表情识别 侧面的传递物品识别 **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl ## 使用 ### 运行setup.py安装必要内容 ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` [windows上安装scipy1.1.0可能会遇到的问题](https://github.com/MVIG-SJTU/AlphaPose/issues/722) ### 运行
2024-04-11 09:11:37 105.52MB 深度学习 python 毕业设计 人脸识别
1
课堂场景行为识别(29万张照片左右) 课堂场景行为识别(29万张照片左右) 课堂场景行为识别(29万张照片左右)
2023-10-17 10:48:01 204.82MB 课堂场景 行为 识别 数据集
1
python姿态检测实现多人多姿态识别python行为识别行为骨骼框架检测动作识别动作检测行为动作分类源码0基础部署视频教程 项目源码下载:https://download.csdn.net/download/babyai996/87552750
2023-06-18 21:29:49 261.81MB python
提出了一种基于车辆行为识别的汽车前方碰撞预警方法.利用单目视觉,首先采用基于梯度方向直方图特征和支持向量机的方法识别前方车辆,并结合卡尔曼滤波进行车辆跟踪;然后使用隐马尔科夫模型对车辆行为进行建模,识别前方车辆行为,并根据行为识别结果计算对应的风险评估因子;最后将风险评估因子引入碰撞风险评估系统,使碰撞预警时间比未加入风险评估因子平均提前2.04s.实车实验验证了本方法的有效性.
1
本数据集为摔倒检测数据集,标注格式为VOC 目标检测框,格式XML,数量为1440
1
深层OF 用于使用从自由移动的动物的视频中提取的时间序列进行后处理的套件 您可以使用此包从时间序列中提取预定义的主题(例如时区,攀岩,基本的社交互动),也可以将数据嵌入到序列感知的潜在空间中,以在无人监督的情况下提取有意义的主题方法! 两者都可以在包内使用,例如,以自动比较用户定义的实验组。 我该如何开始? 安装: 打开一个终端(安装了python> 3.6)并输入: pip install deepof 在我们深入研究之前: 首先,为您的项目创建一个文件夹,其中至少包含两个子目录,分别称为“视频”和“表”。 前者应包含您正在使用的视频(原始数据或从DLC获得的带有标签的视频); 后者应该具有您从DeepLabCut获得的所有跟踪表,格式为.h5或.csv。 如果您不想自己使用DLC,请不要担心:一个兼容的小鼠预训练模型将很快发布! my_project -- Videos ->
2023-04-06 01:55:33 5.97MB JupyterNotebook
1
针对煤矿生产区域的监控视频较为模糊且人员行为类型复杂,常规行为识别方法的准确率较低的问题,提出了一种基于动态注意力与多层感知图卷积网络(DA-GCN)的煤矿人员行为识别方法。采用Openpose算法提取输入视频的人体关键点,得到3个维度、18个坐标的人体关键点信息,降低模糊背景信息的干扰;通过动态多层感知图卷积网络(D-GCN)提取人体关键点的空间特征,通过时间卷积网络(TCN)提取人体关键点的时间特征,提高网络对不同动作的泛化能力;使用动态注意力机制,增强网络对于动作关键帧、关键骨架的注意力程度,进一步缓解视频质量不佳带来的影响;使用Softmax分类器进行动作分类。通过场景分析,将井下行为分为站立、行走、坐、跨越和操作设备5种类型,构建适用于煤矿场景的Cumt-Action数据集。实验结果表明,DA-GCN在Cumt-Action数据集的最高准确率达到99.3%,最高召回率达到98.6%;与其他算法相比,DA-GCN在Cumt-Action数据集和公共数据集NTU-RGBD上均具有较高的识别准确率,证明了DA-GCN优秀的行为识别能力。
1
其中吸烟监测、口罩率监测、火宅监测都由目标检测算法YOLO算法训练所得,项目中也提供了训练代码。行为安全监测由OpenPose算法提取人体姿态再进行分类识别;人群密度监测由MSCNN算法进行估计;行为轨迹跟踪由目标检测+Deepsort跟踪轨迹绘制而成。 ### 以行为轨迹跟踪为例
2023-02-21 02:42:05 83B Python 目标检测 行人跟踪、
1