文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/144125917 重要说明:数据集里面有很多增强图片请查看图片预览 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):7958 标注数量(xml文件个数):7958 标注数量(txt文件个数):7958 标注类别数:9 标注类别名称:["Gloves","Helmet","Person","Safety Boot","Safety Vest","bare-arms","no-boot","no-helmet","no-vest"]
2025-11-13 10:04:20 407B 数据集
1
智慧厨房不规范行为检测数据集是以Pascal VOC格式和YOLO格式组织的,包含了7510张高分辨率的jpg图片及其对应的标注信息。数据集中的标注类别共9种,分别为手套、口罩、口罩不规范佩戴、无手套、无帽子、无口罩、手持手机、帽檐向后和帽檐向前。每张图片都配有一个VOC格式的xml文件和一个YOLO格式的txt文件,通过矩形框标识出图片中相应不规范行为的位置。 该数据集的标注工具为labelImg,是常用的手动标注工具,能够帮助研究者快速准确地在图像中进行目标框的标注。标注规则相对简单明了,只需使用矩形框对图像中的不规范行为进行标注。数据集中涵盖了7510张图像,每张图像都包含对应的标注文件,没有分割路径信息,不包含训练模型或权重文件,也不保证模型精度。 9个标注类别涉及了厨房工作人员在卫生和个人防护方面的常见不规范行为,这些行为包括个人防护装备(PPE)的缺失或不当使用。例如,手套(gloves)和口罩(mask)的正确佩戴是防止食物污染和病毒传播的重要措施,而口罩不规范(mask_improperly)标注类别则涵盖了口罩佩戴不正确的情况。无手套(no_gloves)、无帽子(no_hat)和无口罩(no_mask)的标注类别涉及缺少相应防护装备的情况。手持手机(phone)在操作过程中被认为是一种不卫生的行为,可能造成食物污染。而帽檐向后(visor_back)和帽檐向前(visor_forward)则关注厨师帽佩戴是否规范。 数据集中的标注总框数达到了62832个,这意味着每张图片平均有8.37个矩形框用于标注不同的不规范行为。在各个类别中,部分标注框数量差异较大,如visor_back类别框数最多,而mask_improperly的框数相对较少。这种差异可能反映了在实际厨房操作中某些不规范行为出现的频率更高。 这个数据集为研究人员提供了一个实用的资源,用于训练和评估针对厨房环境下的不规范行为检测模型。通过对这些数据的分析和模型的训练,可以进一步提高厨房工作人员的安全意识和卫生习惯,减少食物安全风险,增强厨房作业的安全性。
2025-11-05 13:26:40 1.06MB 数据集
1
《基于YOLOv8的智慧教室学生行为分析系统》是一个创新的项目,它结合了计算机视觉领域中最新最强大的目标检测算法YOLOv8和智慧教室的实际应用场景。YOLOv8代表了“你只看一次”(You Only Look Once)系列中的最新版本,它在实时目标检测任务中以其高速度和高准确性著称。本系统的核心在于能够实时监测和分析教室内的学生行为,为教育研究和实际教学管理提供辅助。 本系统的源码和可视化界面使它成为一个功能完善且操作简单的工具,非常适合用于毕业设计或课程设计。这意味着即便是没有深入研究经验的学生也能够通过简单的部署步骤轻松运行系统,并开始进行学生行为的分析研究。 系统中包含的“可视化页面设计”为用户提供了一个直观的操作界面,可以展示监测到的学生行为,并可能包含各种控制和数据显示功能,如行为分类、统计图表等。这样的设计不仅能够方便用户进行数据的实时监控,还能够帮助用户更好地理解分析结果。 “模型训练”部分则涉及到对YOLOv8模型进行针对智慧教室场景的优化和训练工作。这需要收集一定量的教室学生行为数据,并进行标注,以训练出能够准确识别不同学生行为的模型。这个过程可能包含了数据的预处理、模型的选择、参数的调整和模型性能的评估等步骤。 系统所附带的“完整数据集”意味着用户不仅能够直接利用这个数据集来训练和验证模型,还可以进行进一步的研究和分析工作,如行为模式的发现、异常行为的识别等。数据集的重要性在于为模型提供足够的“学习材料”,确保模型能够在一个广泛且多样化的场景中准确地工作。 “部署教程”是整个系统包中一个非常重要的组成部分,它指导用户如何一步步地搭建起整个智慧教室学生行为分析系统。教程可能包含了硬件环境的配置、软件环境的安装、系统源码的编译、可视化界面的配置以及如何运行和使用系统的详细步骤。一个好的部署教程可以显著降低系统的使用门槛,确保用户能够顺利地完成整个部署过程。 基于YOLOv8的智慧教室学生行为分析系统是一个集成了前沿目标检测算法、用户友好的界面设计、充足的数据支持以及详细部署教程的综合性分析工具。它不仅可以应用于教学辅助,还能够为研究者提供宝贵的数据支持,有助于教育技术领域的深入研究和实践。
2025-11-04 11:56:51 24.21MB
1
模拟分析PFC含纤维混凝土材料的单轴压缩破坏行为:数值模拟与实验验证,PFC含纤维混凝土材料单轴压缩破坏模拟 ,核心关键词:PFC; 含纤维混凝土材料; 单轴压缩; 破坏模拟; 仿真分析; 力学性能; 模拟实验; 实验数据。,"PFC模拟纤维混凝土单轴压缩破坏过程研究" 在土木工程及材料科学领域,混凝土作为建筑材料的重要性不言而喻。随着科技的进步,混凝土的性能改进和新型混凝土材料的研究开发逐渐成为热点。在这些研究中,含纤维混凝土由于其优异的抗裂性、增强韧性和改善耐久性等特性,受到了广泛的关注。 本文主要探讨了模拟分析PFC(Polymer Fiber Reinforced Concrete,聚合物纤维增强混凝土)含纤维混凝土材料在单轴压缩下的破坏行为。研究采用了数值模拟与实验验证相结合的方法,旨在深入理解这种复合材料的力学性能及其破坏机制。 在数值模拟方面,研究者们运用了仿真分析技术,通过计算机模拟PFC在单轴压缩下的力学响应。这包括了材料的应力应变关系、破坏模式、以及裂纹扩展路径等关键参数的模拟。仿真分析不仅能够提供实验无法直接观察到的微观层面信息,而且还能够帮助研究者们在不同的加载条件和纤维类型下,预测材料的性能。 实验验证部分则通过一系列的单轴压缩测试,得到了PFC含纤维混凝土材料的实验数据。这些数据为数值模拟提供了必要的校验,确保了模拟结果的准确性与可靠性。实验数据涵盖了从弹性阶段到破坏阶段的全面信息,为理论分析和材料设计提供了实证基础。 核心关键词:PFC; 含纤维混凝土材料; 单轴压缩; 破坏模拟; 仿真分析; 力学性能; 模拟实验; 实验数据,这些关键词涵盖了研究的主要内容和研究方法。通过这些关键词,可以概括出该研究的主题,即研究PFC含纤维混凝土在单轴压缩下的破坏行为,并通过数值模拟和实验验证相结合的方式,对这种材料的力学性能进行深入分析。 在研究的过程中,技术博客、技术解析、引言和实验分析报告等文件的撰写,为读者提供了一个全面了解研究背景、目的、方法和结果的窗口。文件中不仅包含了理论探讨,还涉及了实验设计、数据分析和结果解释等详细内容。这些文件资料的整合,为研究者和工程师们提供了一套完整的PFC含纤维混凝土材料研究和应用的参考。 此外,通过粒子流体计算技术的分析,研究者们对纤维混凝土材料在单轴压缩下的破坏过程有了更为深入的认识。这项技术的应用,揭示了材料内部应力分布、裂纹形成与扩展的微观机制,为优化材料结构和提升性能提供了理论依据。 该研究不仅为PFC含纤维混凝土材料的性能改进提供了科学的依据,而且为相关领域的研究者和工程师提供了宝贵的技术资料。这项研究的成功,展示了数值模拟与实验相结合的研究方法在材料科学中的巨大潜力和应用价值。
2025-11-01 01:55:36 876KB
1
反应挤出改性PET的熔融发泡行为,夏天,奚桢浩,通过与均苯四甲酸酐(pyromellitic dianhydride, PMDA)反应挤出改性聚对苯二甲酸乙二醇酯(poly(ethylene terephthalate), PET),提高PET的分子量、拓宽其�
2025-10-30 21:29:15 1.15MB 首发论文
1
芋道是一款基于Java的开源项目,旨在提供企业级管理系统的基础架构。它通过模块化设计降低了系统开发的复杂度,帮助开发者快速构建后台管理与移动端应用。项目的核心价值在于为预算有限的年轻开发者提供免费、透明的技术解决方案,推动真正的开源精神。 【核心功能】 - 多模块化管理:支持系统、会员、支付、商城等业务模块的独立开发与集成。 - 工作流引擎:内置BPM模块,实现业务流程的可视化配置与审批。 - 权限控制:提供基于角色的访问权限管理,保障系统安全性。 - 基础设施集成:整合消息队列、监控报表等常用中间件与工具。 【适用场景/人群】 本项目特别适合在校学生、初创团队及个人开发者,用于快速搭建企业级后台管理系统(如OA、CRM、ERP)或移动应用服务端。适用于教学实践、原型验证及中小型商业项目开发场景。 【快速上手】 1. 克隆代码库并导入IDE,安装Maven依赖。 2. 配置数据库连接,运行SQL初始化脚本。 3. 启动主服务模块(yudao-server),通过本地端口访问管理后台。 4. 按需启用其他模块,参考文档进行功能配置。【版权与免责声明】 本文件由程序利用AI辅助自动生成,内容整理自项目官方开源文档。 资源来自开源社区,仅供个人学习、研究和技术交流使用,请在使用时严格遵守原项目的开源许可协议。 下载后建议在24小时内完成学习与测试,并及时清理相关文件。 严禁将此资源用于任何商业目的或非法活动。任何因使用、修改或分发本资源而引起的法律纠纷或责任,均由使用者自行承担。 如本文档内容侵犯了您的合法权益,请联系开发者予以删除。
2025-10-28 10:30:26 7.66MB
1
YOLOv11目标检测实战项目 本项目是一个基于深度学习的实时异常行为检测系统,专注于人体摔倒检测。系统使用YOLOv11姿态估计模型进行人体关键点检测,并结合BYTETrack多目标跟踪算法实现对多个目标的持续跟踪和状态判断。
2025-10-26 13:56:11 146.4MB 异常行为检测 目标检测 摔倒检测
1
在无线通信安全领域,信道状态信息(CSI)分析与深度学习模型训练的结合为网络安全性带来了新的研究方向。当前,基于WiFi信号的非接触式键盘输入监测系统,以及用于网络安全审计与隐私保护的击键特征提取算法研究,正在成为热点。这些研究主要关注如何通过深度学习技术,实现对通过无线网络传输的数据包进行分析,并从中提取出击键行为的特征信息。 非接触式键盘输入监测系统能够通过WiFi信号的细微变化,捕捉用户在键盘上的敲击动作。由于每个人敲击键盘的方式具有唯一性,因此可以将这些信息作为区分不同用户击键行为的依据。此外,深度学习模型被用来训练系统,以识别和分类这些击键行为,提高系统的精确度和效率。 在击键行为的识别与分类过程中,深度学习模型能够处理来自信道状态信息的海量数据,并通过学习大量的击键样本数据,自动识别不同用户的击键模式。通过这种方式,系统不仅能够监控键盘输入活动,还能通过分析和比较击键特征,准确地识别出不同的用户。 该技术在网络安全审计和隐私保护方面有着重要应用。在审计过程中,该系统可以作为监控工具,及时发现非授权的键盘活动,进而采取措施保护敏感数据不被非法访问。同时,对于个人隐私保护来说,该技术能够阻止不法分子通过键盘记录器等方式非法获取用户的击键信息。 除了提供网络安全审计与隐私保护功能外,这些研究还促进了高精度击键位的实现。通过深度学习模型的训练,系统能够精确地定位每个击键动作,为未来提升无线网络安全和隐私保护水平提供了技术保障。 这些研究工作为无线通信安全领域的专家和技术人员提供了新的视角和解决方案。随着技术的不断进步和深度学习模型的持续优化,未来的网络安全和隐私保护技术将更加成熟和高效。
2025-10-25 20:52:23 7.59MB python
1
在当今信息化时代,信息安全变得尤为重要,尤其是对于个人和企业的敏感信息保护。恶意键盘记录软件,即键盘记录器,是一种能够记录用户键盘输入的恶意软件,这种软件的出现给信息安全带来了极大的威胁。键盘记录器能够悄无声息地记录用户在计算机上的每一次按键操作,进而获取用户的账号密码、银行信息、电子邮件和其他敏感数据,使用户面临重大的隐私泄露和财产安全风险。 为了应对这种威胁,研究者们开发了基于Python的实时键盘输入行为分析与安全审计系统。该系统的主要功能包括实时监测键盘输入行为,及时检测并防范键盘记录软件。通过强大的分析算法,系统能够对键盘输入行为进行实时监测,并通过行为分析技术识别出键盘记录软件的行为特征,从而实现有效的防护。 此外,该系统还提供了键盘输入行为的可视化分析功能。通过图形化界面,用户可以清晰地看到自己的键盘输入行为模式,包括输入频率、按键习惯等,这不仅帮助用户更好地了解自己的输入习惯,还有助于用户及时发现异常的输入行为,增强个人的数据保护意识。 异常输入模式的识别是该系统的重要组成部分。系统能够根据用户正常的输入行为建立模型,并对比实时输入数据,一旦发现偏离正常模式的行为,系统将立即进行警报提示。这种异常检测机制确保了用户在遭受键盘记录器攻击时能够第一时间得到通知,从而采取相应的防护措施。 对于系统开发者来说,Python语言的灵活性和强大的库支持是实现复杂功能的关键。Python编程语言的简洁性和易读性使开发人员能够更加高效地编写代码,实现复杂的数据处理和算法逻辑。同时,Python拥有一系列成熟的库,如PyQt或Tkinter用于界面开发,Scikit-learn用于机器学习算法实现,这些都为安全系统的开发提供了强大的技术支持。 基于Python开发的实时键盘输入行为分析与安全审计系统,不仅能够实时监测和防范恶意键盘记录软件,还通过可视化分析和异常输入模式识别,为用户提供了一个全面、直观的键盘输入安全解决方案。这一系统对于保护用户敏感输入信息,维护计算机系统的安全运行具有极其重要的意义。
2025-10-25 20:49:04 4.54MB python
1
《基于YOLOv8的智慧农场牲畜异常行为监测系统》是一项结合了深度学习技术和智慧农业的创新项目,旨在通过先进的计算机视觉技术对农场中的牲畜进行实时监控,并识别出异常行为,以提高牲畜养殖的管理水平和动物福利。YOLOv8(You Only Look Once version 8)作为该系统的视觉检测模型,是YOLO系列算法的最新版本,以其速度快、准确度高、易于部署而著称,在处理实时视频流中的目标检测任务方面表现出色。 本系统通过整合源码、可视化界面、完整数据集和部署教程,为用户提供了一套完备的解决方案。用户只需简单部署,便可以运行系统,并进行牲畜行为的实时监测。系统中的可视化界面允许用户直观地查看监测结果,极大地降低了操作复杂性,使得非专业人士也能方便地使用系统。此外,所提供的完整数据集为模型训练提供了必要的标注信息,有助于提高模型的泛化能力和检测效果。 在技术实现方面,模型训练是一个核心环节,涉及到数据预处理、网络结构设计、参数调优和验证等多个步骤。由于YOLOv8的高效性,模型可以在较短的时间内完成训练过程,同时保持较高的准确率。这一点对于要求实时反馈的牲畜行为监测系统来说至关重要。 部署教程的提供,进一步确保了用户即便缺乏深度技术背景,也能够顺利完成系统的搭建和运行。教程可能包括环境配置、软件安装、代码导入、界面操作等方面的内容,确保用户能够按照既定步骤快速上手。 本系统在实际应用中,可广泛适用于牧场、养殖场等农业场景。它可以监测牲畜的运动模式,及时发现疾病、受伤或其他异常行为,从而为牲畜的健康管理提供有力的技术支持。同时,系统还能够帮助农场主更好地安排饲养计划,提升生产效率和质量。 《基于YOLOv8的智慧农场牲畜异常行为监测系统》不仅为智慧农业领域提供了一种高效的监测手段,也展现了计算机视觉技术在非传统领域的巨大潜力和应用价值。通过本系统的部署和使用,有望极大推动农业现代化进程,实现畜牧业的可持续发展。
2025-10-24 13:17:10 24.21MB
1