从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
2023.10.2官网发布的新版本。下载完成后,填写学生姓名和学校就可以免费使用,请勿商用。 用于构建、学习和探索贝叶斯网络和其他概率图形模型。
2024-03-06 19:01:48 19.31MB 网络 网络
1
java编写的贝叶斯网络分类器(贝叶斯算法java版本的代码) JavaBayes-0.346.zip JavaBayes-javadoc-0.346.jar JavaBayes-manual-0.346.ps.gz
2023-11-09 07:05:05 901KB 贝叶斯
1
贝叶斯网络参数学习 课程项目-COL884(Spring'18):人工智能的不确定性 创作者:Navreet Kaur [2015TT10917] 客观的: 警报贝叶斯网络给定数据的贝叶斯参数学习,每行最多有一个缺失值。 使用的算法: 期望最大化 目标: 这项任务的目的是获得学习贝叶斯网络的经验,并了解它们在现实世界中的价值。 设想: 医学诊断。 一些医学研究人员创建了贝叶斯网络,该网络对(某些)疾病和观察到的症状之间的相互关系进行建模。 作为计算机科学家,我们的工作是根据健康记录来学习网络的参数。 不幸的是,在现实世界中,某些记录缺少值。 我们需要尽力计算网络参数,以便以后可以将其用于诊断。 问题陈述: 我们得到了由研究人员创建的贝叶斯网络(如BayesNet.png所示),注意此处对八种诊断进行了建模:血容量不足,左心衰竭,过敏React,镇痛不足,肺栓塞,插管,弯管和断线。
1
贝叶斯网络可视化工具genie_academic最新版,具有参数学习、结构学习等功能。学术版,请勿用于商业用途。
2023-04-10 15:52:17 15.66MB 贝叶斯网络
1
基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法
2023-04-06 17:44:06 284KB 基于粗糙集理论和贝叶斯网络
1
dbn matlab代码BNT-SM 用于学生建模的贝叶斯网络工具箱(BNT-SM)旨在促进在学生建模社区中使用动态贝叶斯网络。 BNT-SM输入了一个数据集和一个由研究人员假设的贝叶斯网络模型的紧凑XML规范,该模型用于描述学生知识与观察到的行为之间的因果关系。 BNT-SM使用贝叶斯网络工具箱生成并执行代码以训练和测试模型。 BNT-SM使研究人员可以轻松地探索关于学生模型中知识表示的不同假设。 例如,通过改变贝叶斯网络的图形结构,我们研究了补习干预如何影响学生的知识状态-干预是可能脚手架还是可以帮助学生学习。 安装 BNT-SM是在Matlab中实现的,因此您需要安装并运行Matlab。 典型用法示例 下载并解压缩BNT-SM后,启动Matlab并执行 >> cd src >> setup >> cd ../model/kt >> [property evidence hash_bnet] = RunBnet('property.xml'); Property.xml是一个XML文件,用于指定我们正在构建的贝叶斯网络。 在目录BNT-SM / model中,您可以找到其他一些贝叶
2023-03-27 10:03:03 2KB 系统开源
1
matlab中的贝叶斯网络工具箱的使用说明书
2023-03-26 15:23:58 902KB 贝叶斯 MATLAB
1
matlab非参数代码女妖 此存储库包含 BANSHEE - 用于非参数贝叶斯网络的 MATLAB 工具箱。 代码是支持SoftwareX论文的原始版本的更新: 贝叶斯网络 (BN) 是用于表示复杂依赖结构的概率图形模型。 它们在科学和工程中有许多应用。 这个工具箱实现了一个特别强大的变体非参数 BN。 该软件允许量化 BN,验证模型的基本假设,可视化网络及其相应的秩相关矩阵,最后根据现有或新证据对 BN 进行推理。 该工具箱还包括一些发表在近期科学文献中的应用 BN 模型。 src/ 目录包含 BANSHEE.mltbx 文件,其中包含 MATLAB 工具箱的安装程序。 docs/ 目录包含工具箱的快速入门指南。 使用工具箱前请查阅指南。 此版本 (1.2) 与支持 SoftwareX 出版物 (v1.1) 的已发布版本相比具有以下更改: 添加了两个新的现实生活模型,用于预测住宅和商业部门的洪水损失; 更新了快速入门指南; 更正“predict_coastal_erosion.m”中的描述; 删除三个 .mat 文件,其中包含其他 .mat 文件中存在的数据; 更新对 Softwar
2023-02-27 21:59:54 5.85MB 系统开源
1
针对林火预测具有影响因素多、机制复杂、难以结构化等特点,设计并实现了一个基于贝叶斯网络的实用林火概率预测系统。该系统以气象、植被、地理、人类活动等数据作为输入,综合林火历史数据建立贝叶斯网络模型,并应用联合树算法进行概率推理,进而预测出林火发生概率。在某省实际林火历史数据上对系统进行了测试,比较了所设计系统与加拿大火险天气指标系统(FWI)的预测性能,验证了系统的可行性和实用性。
2023-02-16 20:44:43 957KB 论文研究
1