内容概要:本文介绍了一种名为DBO-DHKELM的新颖数据分类预测模型及其Matlab实现方法。该模型结合了多项式核函数和高斯核函数,构建了新的混合核函数,并引入自动编码器改进极限学习机。通过蜣螂优化算法优化模型的9个关键参数,提高了模型的泛化能力和预测准确性。文章详细讲解了模型的建立、参数优化以及Matlab程序的具体实现步骤,展示了模型的分类效果并提供了测试数据和操作指南。 适合人群:对机器学习感兴趣的研究人员和技术爱好者,尤其是希望深入理解极限学习机和优化算法的初学者。 使用场景及目标:适用于需要高效数据分类预测的应用场景,如金融风险评估、医疗诊断、市场趋势预测等。目标是提升数据分类的准确性和效率。 其他说明:程序注释清晰,适合新手小白快速上手。附赠测试数据,方便用户进行实验和验证。
2025-08-29 17:42:18 2.46MB
1
内容概要:本文介绍了基于蜣螂优化算法(DBO)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量时序预测项目。该项目旨在提升多变量时序预测的准确性,通过融合CNN提取局部时空特征、BiLSTM捕捉双向长短期依赖、注意力机制动态加权关键时间点和特征,以及DBO算法智能优化模型参数,解决传统方法难以捕获长短期依赖和多变量非线性交互的问题。项目解决了多变量时序数据的高维复杂性、模型参数难以调优、长期依赖难以捕获、过拟合与泛化能力不足、训练时间长、数据噪声及异常值影响预测稳定性、复杂模型可解释性不足等挑战。模型架构包括输入层、卷积层、双向长短期记忆层(BiLSTM)、注意力机制层和输出层,参数优化由DBO负责。; 适合人群:对深度学习、时序数据分析、群体智能优化算法感兴趣的科研人员、工程师及研究生。; 使用场景及目标:①提升多变量时序预测准确性,满足实际应用对预测精度的高要求;②实现模型参数的智能优化,减少人工调参的工作量和盲目性;③解决时序数据的非线性和动态变化问题,适应真实场景中的时变特性;④推动群体智能优化算法在深度学习中的应用,探索新型优化算法与深度学习结合的可行路径。; 阅读建议:本文涉及多变量时序预测的理论背景、模型架构及其实现细节,建议读者在阅读过程中结合MATLAB代码示例进行实践,深入理解各个模块的作用及优化策略。
2025-08-05 21:53:24 31KB 深度学习 时序预测
1
内容概要:本文介绍了一种创新的时间序列预测模型MSADBO-CNN-BiGRU,该模型结合了蜣螂优化算法(MSADBO)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)。模型通过Python代码实现了数据预处理、模型构建、参数优化以及结果可视化。文中详细解释了模型的关键组件,如Bernoulli混沌初始化、改进的正弦位置更新和自适应变异扰动。此外,还提供了具体的参数优化范围和注意事项,确保模型能够高效地进行时间序列预测。 适合人群:从事时间序列预测研究的技术人员、数据科学家以及有一定机器学习基础的研究人员。 使用场景及目标:适用于需要高精度时间序列预测的任务,如电力负荷预测、金融数据分析、销售预测等。目标是通过优化模型参数,提高预测准确性,降低均方误差(MSE)和平均绝对百分比误差(MAPE)。 其他说明:模型的性能依赖于数据质量和参数设置。建议初学者先使用提供的示范数据集进行实验,熟悉模型的工作流程后再应用于实际数据。遇到预测效果不佳的情况,应首先检查数据的质量和特征工程是否到位。
2025-08-05 21:50:30 146KB
1
蜣螂优化算法(dung beetle optimizer,DBO)是JiankaXue 和Bo Shen 在2022 年提出的一种新型群体智能优化算法[1],其灵感来自于蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为。该算法同时考虑了全局探索和局部开发,从而具有收敛速度快和准确率高的特点,可以有效地解决复杂的寻优问题。本文将对该算法进行原理讲解及程序实现。
2025-05-14 11:54:58 3.56MB
1
内容概要:文章详细介绍了利用蜣螂优化算法(DBO)优化Leach算法在无线传感器网络(WSN)中的Matlab实现。Leach是一种经典的低功耗自适应聚类分层型协议,而DBO的引入旨在优化其簇头选择等薄弱环节,从而提升网络的整体性能。文中关注的核心指标包括死亡节点数、存活节点数、能量消耗及剩余能量,这些指标直观反映了优化效果。通过具体的Matlab代码展示了节点初始化、位置生成、基于DBO的簇头选择改进及能量消耗计算等关键步骤。此外,还探讨了能量均衡机制、适应度函数的设计以及针对不同应用场景的参数调整,最终实验数据显示优化后的算法在网络寿命、节点存活率和能耗方面均有显著改善。 适合人群:对无线传感器网络及优化算法感兴趣的科研人员、研究生或相关专业高年级本科生。 使用场景及目标:①研究无线传感网络中的能量管理与优化;②探索不同优化算法在经典协议中的应用;③为特定应用场景(如野生动物监测)提供优化配置建议。 阅读建议:由于涉及到具体的算法实现和性能评估,建议读者在阅读时结合Matlab代码进行实践操作,同时关注不同参数设置对网络性能的影响,以便深入理解优化机制。
2025-04-17 10:22:32 1.02MB sqlite
1
CEC2022求解(以蜣螂优化算法为例)
2024-05-10 20:16:14 2.74MB 优化算法
1
蜣螂优化算法是最新的群智能优化算法,效果不错,适合作研究论文,亲测有效
2023-03-26 10:23:19 3.52MB 蜣螂优化算法 DBO 群智能优化算法
1
可以运行的代码!蜣螂优化算法(DBO)优化支持向量机(SVM),能够很好的进行分类或者预测,并且该算法是今年提出的,非常好用,值得推荐和写论文
2023-03-15 16:18:38 13KB 蜣螂优化算法 支持向量机 DBO SVM
1
蜣螂优化算法是2022年年底提出来的,是最新的群智能优化算法,非常适合发论文
2023-03-11 19:44:22 3.52MB 蜣螂优化算法 DBO Python
1
可以运行的代码!蜣螂优化算法(DBO)优化极限学习机(ELM),能够很好的进行回归预测,并且该算法是今年提出的,非常好用,值得推荐和写论文
2023-03-06 08:58:28 24KB 蜣螂优化算法 DBO 极限学习机 ELM
1