花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
2024-06-30 15:43:13 6.81MB android
1
基于深度学习的花卉识别系统设计与实现.pdf
2023-03-04 10:14:55 2.94MB
1
基于深度学习resnet网络开发的花卉分类识别系统,包含5种类别的花卉(玫瑰、向日葵、紫罗兰等),包含训练文件,也可以自己训练。可以单张图片识别也可多张一起识别,并开发了gui系统界面。在readme文件中做了说明。(有没有GPU均可运行)
2023-03-02 16:51:08 152.7MB 深度学习 resnet 分类算法 花卉分类
1
基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉
android studio实现基于移动终端的花卉识别系统--Android系统源码。  基于移动终端的花卉识别系统 Android开发语言:Java,使用开发工具:Android Studio android studio实现基于移动终端的花卉识别系统--Android系统源码。  基于移动终端的花卉识别系统 Android开发语言:Java,使用开发工具:Android Studioandroid studio实现基于移动终端的花卉识别系统--Android系统源码。  基于移动终端的花卉识别系统 Android开发语言:Java,使用开发工具:Android Studioandroid studio实现基于移动终端的花卉识别系统--Android系统源码。  基于移动终端的花卉识别系统 Android开发语言:Java,使用开发工具:Android Studioandroid studio实现基于移动终端的花卉识别系统--Android系统源码。  基于移动终端的花卉识别系统 Android开发语言:Java,使用开发工具:Android Studio
2022-06-03 09:07:21 7.32MB android 源码软件 android studio
传统的花卉识别算法一般是建立在手动特征提取和分类器训练的基础上,其泛化能力有限且准确度存在瓶颈。为此提出了基于深度卷积网络的识别算法,采用152层残差网络架构,在爬虫获取的大量标定数据基础上,对神经网络进行迁移学习训练。上线发布的算法集成系统中,用户拍照获取的花卉照片可通过网络传输到云服务器,并在服务端部署的深度学习架构下实现花卉快速识别。针对ImageNet和网龙花卉数据集的实验对比结果表明,基于残差网络迁移学习的方法具有识别准确率高、实时反馈、鲁棒性好等特点。
2021-05-20 17:57:08 968KB 论文研究
1
提前说明一下,本文的CNN神经网络模型是参考网上诸多相关CNN图像分类大牛的博客修改的,在模型的基础上,用python的Flask框架搭载了一个web页面用来可视化展示。 第一步,爬取图片数据集 用python实现了一个非常简单的网络爬虫,对百度图片接口 http://image.baidu.com/search/acjson?tn=resultjson_com&ipn=rj&ct=201326592&is=&fp=result&queryWord=高清动漫&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid
2021-05-14 11:36:43 218KB ens low ns
1