花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
2024-06-30 15:43:13 6.81MB android
1
PKU-Flower-Encyclopedia 2018 PKU JAVA程序设计 Project
2024-06-29 13:02:45 23.3MB Java
1
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图识花).zip 一款花卉识别的Android软件源码+项目说明(识别结果来自于植物研究所与百度识图合作的看图
2024-06-29 13:02:28 1.51MB android
基于深度学习的花卉识别系统设计与实现.pdf
2023-03-04 10:14:55 2.94MB
1
基于深度学习resnet网络开发的花卉分类识别系统,包含5种类别的花卉(玫瑰、向日葵、紫罗兰等),包含训练文件,也可以自己训练。可以单张图片识别也可多张一起识别,并开发了gui系统界面。在readme文件中做了说明。(有没有GPU均可运行)
2023-03-02 16:51:08 152.7MB 深度学习 resnet 分类算法 花卉分类
1
基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉,整体识别率达到97%左右。 基于TensorFlow的花卉识别系统代码和全部项目资料python实现.zip该花朵识别项目使用Python语言,基于TensorFlow深度学习框架所开发,可以识别多种花卉
基于TensorFlow实现的花卉识别项目代码+使用说明.zip打开项目 选择TFLClassify/build.gradle生成整个项目。项目包含两个module:finish 和 start,finish模块是已经完成的项目,start是本项目实践的模块。 第一次编译项目时,弹出“Gradle Sync”,下载相应的gradle wrapper。 手机连接电脑,设置开发者模式,开发相关权限。 输入图片说明 向应用中添加TensorFlow Lite 1.选择“start”模块,右键“start”模块,或者选择File,然后New>Other>TensorFlow Lite Model 输入图片说明 2.选择已经下载的自定义的训练模型。本教程模型训练任务以后完成,这里选择finish模块中ml文件下的FlowerModel.tflite。 输入图片说明 3.导入成功后,查看摘要信息 输入图片说明 检查代码中的TODO项 默认情况下了列出项目所有的TODO项,进一步按照模块分组(Group By) 查看视图: 输入图片说明 添加代码使APP运行成功 定位“sta
智慧农业花卉检测基于yolov5柚子花检测项目源码(带GUI界面)+训练好的模型+数据集+评估指标曲线+操作使用说明.7z 植物花卉识别检测、柚子花卉识别检测源码,带数据集,带模型,GUI界面,评估指标曲线,操作使用说明 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
提供十种花卉的图像识别与分类,测试集准确率较好
2022-11-06 15:05:18 5.54MB 花卉识别 图像识别花卉 分类 十种花卉
1