技术:基于python微博舆情分析可视化系统+爬虫+情感分析,含有代码注释,新手也可看懂,毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目系统功能完善、界面美观、操作简单、功能齐全、管理便捷可以作为毕设、期末大作业使用。 国内有多家大型社交媒体平台,微博是其中的一员。在微博中,一条微博内容包括微博用户、微博内容、发布时间、转发数、评论数、点赞数、用户地理位置。编写设计爬虫程序和话题抽取方法,以及情感分析算法、对信息进行预处理、清洗、并进行话题下用户情感倾向性判断等,最终实现对微博舆情分析系统的可视化。 要求: 1.目标网站:htts://weibo.com 2.详细分析该网站的html结构,并设计合适的爬虫策略,对全网内容进行爬取; 3.利用爬取的内容构建语料库,语料库字段包括微博内容,发布用户,用户性别,发布位置等; 4.利用合适的聚类方法对微博话题进行抽取,提取微博话题前十的话题内容; 5.对前十话题中的内容选择合适的模型进行情感分析,判断用户对该话题的态度; 6.数据可视化:生成微博话题柱状图,以及各个话题下的用户分布图等。
2025-03-23 23:55:16 17.17MB 毕业设计
1
基于python的网络舆情分析系统源码数据库论文 标题解读: 该论文的标题“基于python的网络舆情分析系统源码数据库论文”表明该论文的主题是基于Python语言和MySQL数据库开发的网络舆情分析系统。该系统的目的是为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 描述解读: 该论文的描述部分没有明确的描述,但是根据论文的内容可以看出,该论文的目标是设计和实现一个基于Python语言和MySQL数据库的网络舆情分析系统。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 标签解读: 该论文的标签包括“网络”、“网络舆情分析”、“Python”、“软件/插件”、“数据库”。这些标签表明该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 内容详解: 该论文的主要内容可以分为两个部分:第一部分是论文的引言和背景介绍,第二部分是系统的设计和实现。 在论文的引言部分,作者对计算机技术的发展和影响进行了介绍,并强调了网络舆情分析的重要性。 在系统的设计和实现部分,作者详细介绍了基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现过程。该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。该系统的主要功能包括言论分析、言论管理、用户管理等。 关键点总结: 基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能。 该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。 知识点: 1. 网络舆情分析系统的设计和实现 2. 基于Python语言和MySQL数据库的开发 3. 言论分析、言论管理、用户管理等多种功能 4. 网络管理部门的需求和挑战 5. 计算机技术的发展和影响 该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情
2024-06-24 16:48:47 1.73MB 网络 网络 python
1
https://shao12138.blog.csdn.net/article/details/87993334
2024-05-04 16:11:25 44.76MB 毕业设计 spring boot spring
1
基于python微博舆情分析可视化系统+爬虫+情感分析+Flask框架(包含文档+源码+部署教程) 本次就是在微博方面,通过建立微博情感分析可视化系统,来让用户可以通过简单的微博信息、评价有计算机来自动进行情感的判断,从而为判断出用户对于微博的情感好坏,能够通过对评价的统计分析来实现情感分析、舆情分析的功能。本次的开发是利用了Python技术和Flask框架来搭建网站,采用MySQL数据库存储数据,通过网络爬虫技术采集数据,最终搭建网页的形式展现。 项目截图 1、首页-----数据概况 在这里插入图片描述 2、舆情分析 在这里插入图片描述 3、中国地图----各省份IP分析 在这里插入图片描述 4、文章分析页面 在这里插入图片描述 5、评论分析页面 在这里插入图片描述 6、数据管理页面 在这里插入图片描述 7、微博舆情统计页面 在这里插入图片描述 8、爬虫数据采集页面 在这里插入图片描述 9、系统注册登录功能 在这里插入图片描述
2024-03-19 21:58:45 87.79MB python 爬虫 情感分析 舆情分析
1
针对K-means算法因随机选取聚类中心而易造成聚类结果不稳定的问题,提出PCA-KDKM算法。该算法使用主成分分析法对数据集的属性降维,提取主属性;利用k′dist曲线自动获取k值;计算平缓曲线上所含数据对象的均值并选取其中一值,作为首个初始聚类中心;利用基于密度和最大最小距离的算法思想进行聚类;结合类间距离和类内聚类提出聚类质量评价函数。将该算法与K-means、KNE-KM、QMC-KM、CFSFDP-KM在UCI数据集上进行聚类比较,结果表明该算法聚类结果稳定,聚类准确率高。将PCA-KDKM算法应用在微博舆情分析中,抓取不同类别的数万条数据进行聚类分析。实验结果表明,PCA-KDKM算法在微博舆情分析中有更高的准确性和稳定性,有利于及时发现热点舆情
2024-01-11 11:38:00 437KB K-means算法 聚类 质量评价函数
1
本科毕业设计-微博舆情管理平台:数据分析系统的设计与实现.doc
2023-12-19 21:17:58 623KB
1
计算机毕业设计:基于python微博舆情分析可视化系统+爬虫+情感分析+Flask框架 项目源码 本次就是在微博方面,通过建立微博情感分析可视化系统,来让用户可以通过简单的微博信息、评价有计算机来自动进行情感的判断,从而为判断出用户对于微博的情感好坏,能够通过对评价的统计分析来实现情感分析、舆情分析的功能。本次的开发是利用了Python技术和Flask框架来搭建网站,采用MySQL数据库存储数据,通过网络爬虫技术采集数据,最终搭建网页的形式展现。 项目截图 1、首页-----数据概况 2、舆情分析 3、中国地图----各省份IP分析 4、文章分析页面 在这里插入图片描述 5、评论分析页面 在这里插入图片描述 6、数据管理页面 7、微博舆情统计页面 8、爬虫数据采集页面 9、系统注册登录功能
2023-11-12 19:44:16 87.79MB 毕业设计 python 爬虫 舆情分析
1
包含code代码、data数据、报告文档、报告PPT和报告视频 2022年12月27日,为期3天的全国硕士研究生招生考试正式落下帷幕,今年的赶考之路因为病毒的肆意蔓延显得格外坎坷。而在网络上,针对今年的考研热议也迎来一轮一轮的高潮,或为自己加油打气,期待能够考出一个满意的成绩,或交流考试心得吸取复习经验,或担心自己的身体状况和考场的安全问题...... 围绕着考研相关话题的网络舆论在以微博为首的社交媒体上不断发酵。微博诞生于2009年,是移动互联网和Web2.0时代的代表产品。通过微博,用户可以利用140字的短文本形式发布信息,也可以浏览到正在发生的事件,满足了用户的社交需求和咨询需求,迅速占领国内市场。 通常情况下,舆论主体的情感倾向可以影响舆情事件的发展趋势,同时有效反映其对事件积极或消极的态度。本文通过微博话题“考研”作为研究对象并收集相关数据,研究舆情参与主体的情感强度。
1
本次建设的新闻舆情监控系统,其系统用例分别为用户和管理员。用户具有用户登录、新闻查看、观看新闻、新闻评论、个人信息查看、个人信息修改、用户退出等功能。管理员具有新闻管理、留言管理、个人信息管理、修改密码、舆情监控等功能。 使用前请仔细查看说明文档
2023-09-19 07:15:53 40.07MB python
1
互联网的飞速发展促进了很多新媒体的发展,不论是知名的大V,明星还是围观群众都可以通过手机在微博,朋友圈或者点评网站上发表状态,分享自己的所见所想,使得“人人都有了麦克风”。不论是热点新闻还是娱乐八卦,传播速度远超我们的想象。可以在短短数分钟内,有数万计转发,数百万的阅读。如此海量的信息可以得到爆炸式的传播,如何能够实时的把握民情并作出对应的处理对很多企业来说都是至关重要的。大数据时代,除了媒体信息以外,商品在各类电商平台的订单量,用户的购买评论也都对后续的消费者产生很大的影响。商家的产品设计者需要汇总统计和分析各类平台的数据做为依据,决定后续的产品发展,公司的公关和市场部门也需要根据舆情作出相
1