为提高立体匹配算法的效果和稳定性, 提出了一种基于色调(H)、饱和度(S)和明度(V)颜色空间的自适应聚合区域的引导滤波算法。结合图片的结构和纹理信息, 通过颜色和横向梯度的相互作用计算初始匹配代价。在HSV颜色空间中运用颜色和距离信息计算每一点的自适应支撑臂长, 解决了图片中红、绿、蓝3种颜色变化趋势相近导致无法有效反映图片信息的问题。自适应聚合区域利用中心点纵向臂上各点的横向臂进行构造, 采用引导滤波的方法在自适应聚合区域内聚合代价空间。为避免中心点邻域信息波动造成支撑窗口过小的问题, 设置了臂长的最小范围。后处理过程采用左右一致性检测结合峰比率检测的方法寻找误匹配点, 通过近邻点匹配和加权中值滤波的方法修正视差图。采用Middlebury平台上的标准图片进行实验, 结果表明所提算法的平均匹配误差为5.24%, 比改进前的自适应窗口算法的匹配误差降低了0.92%, 具有更好的边缘保持效果, 算法参数稳健性较好。
2021-05-03 21:23:32 9.65MB 成像系统 立体匹配 自适应聚 引导滤波
1
针对机器人随机箱体抓取过程中场景分割困难的问题, 提出一种基于改进欧氏聚类的散乱工件点云分割方法。采用直通滤波法和迭代半径滤波法进行预处理, 得到去除干扰点后的散乱工件点云; 通过基于法线夹角的边缘检测去除点云中的边缘点, 并使相互碰撞的工件在空间上产生分离; 采用改进的搜索半径自适应欧氏聚类进行点云分割, 得到多个工件点云子集, 基于距离约束将去除的边缘点补齐到点云子集之中, 从而完成点云分割。此外, 线下模板点云注册为分割参数的选取提供依据, 从而保证了分割结果的准确性, 提高了分割速度。结果表明:基于改进欧氏聚类的散乱工件点云分割方法能够准确地分割出感兴趣的工件, 分割时间约为696 ms, 满足了工业机器人抓取的实时性要求。
2021-04-05 16:20:27 12.59MB 机器视觉 欧氏聚类 点云分割 自适应聚
1