针对双目视觉深度估计成本高、体积大以及监督学习需要大量深度图进行训练的问题,为实现无人机在飞行过程中的场景理解,提出一种面向无人机自主飞行的无监督单目深度估计模型。首先,为减小不同尺寸目标对深度估计的影响,将输入的图像进行金字塔化处理;其次,针对图像重构设计一种基于ResNet-50进行特征提取的自编码神经网络,该网络基于输入的左视图或右视图以及生成对应的金字塔视差图,采用双线性插值的方法重构出与其对应的金字塔右视图或左视图;最后为提高深度估计的精度,将结构相似性引入到图像重构损失、视差图一致性损失中,并且联合视差图平滑性损失、图像重构损失、视差图一致性损失作为训练的总损失。实验结果表明,经过在KITTI数据集上的训练,该模型在KITTI和Make3D数据集上相比其他单目深度估计方法具有更高的准确性和实时性,基本满足无人机自主飞行对深度估计准确性和实时性的要求。
2022-05-12 15:19:15 9.95MB 图像处理 无监督 自编码神 图像重构
1