### 南邮自然语言处理实验一知识点解析 #### 一、实验背景与目的 本次实验为南京邮电大学自然语言处理课程的一部分,旨在通过实践操作加深学生对自然语言处理技术的理解与应用。实验主要聚焦于两个核心任务:词典分词和二元语法分词。 1. **词典分词**:基于词典查找的方法进行中文文本的切分。 2. **二元语法分词**:利用二元文法规则进行文本切分,是一种统计语言模型的应用。 #### 二、实验环境配置 - **硬件**:微型计算机 - **软件**:Windows操作系统、Python 3.7或3.8 - **工具**:HanLP,一款高性能的Java/Native中文处理工具包,支持词性标注、命名实体识别等功能。 #### 三、实验内容详解 ##### 1. 使用HanLP进行分词 **步骤1:** 在命令行提示符中输入`hanlp segment`后回车,将显示分词结果。例如: - 输入:“商品和服务” - 输出:“商品/n, 和/cc, 服务/vn” - 输入:“当下雨天地面积水分外严重” - 输出:“当/p, 下雨天/n, 地面/n, 积水/n, 分外/d, 严重/a” - 输入:“王总和小丽结婚了” - 输出:“王总/nr, 和/cc, 小丽/nr, 结婚/vi, 了/ule” - 输入:“欢迎新老师生前来就餐” - 输出:“欢迎/v, 新/a, 老/a, 师生/n, 前来/vi, 就餐/vi” - 输入:“结婚的和尚未结婚的确实在干扰分词啊” - 输出:“结婚/vi, 的/ude1, 和/cc, 尚未/d, 结婚/vi, 的/ude1, 确实/ad, 在/p, 干扰/vn, 分词/n, 啊/y” **步骤2:** 若仅需分词结果而不含词性标注,可在命令后添加`--no-tag`参数。例如: ``` hanlp segment --no-tag ``` **步骤3:** 通过文件输入输出进行分词处理。例如,对`input1.txt`文件进行分词并将结果保存至`output1.txt`中: ``` hanlp segment < input1.txt > output1.txt -a crf ``` 输出示例: ``` 春分/t 最/d 具/vg 灵性/n 的/ude1 美/b ,/w 是/vshi 千/m 色/ng 万/m 彩/ng 在/p 此时/r 终于/d 迎来/v 了/ule 盛开/v 的/ude1 时节/n 。/w 曾经/d 在/p 冬日/n 寒冷/a 中/f 蛰伏/v 的/ude1 土地/n ,/w 走过/v 立春/t ,/w 走过/v 雨水/n ,/w 走过/v 惊蛰/t ,/w 已经/d 完全/ad 苏醒/vi 。/w 春风/n 千/m 里/f ,/w 吹开/nz 百花/n ,/w 大江南北/n 暖意/n 融融/z ,/w 既/c 自外而内/l 熏染/v 着/uzhe 人们/n 的/ude1 心灵/n ,/w 又/d 自/p 内向/a 外/f ,/w 由/p 心/n 而/cc 发/v ,/w 欢快/a 的/ude1 灵魂/n 在/p 满园春色/n 里/f 自由/a 地/ude2 徜徉/vi 。/w ``` ##### 2. 句法分析 使用`hanlp parse`指令进行句法分析,以深入理解句子的结构和成分之间的关系。例如,对句子“徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标”进行句法分析: ``` hanlp parse <<< '徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。' ``` 输出结果: ``` 1 徐先生 徐先生 nhnr_4 主谓关系__ 2 还 还 dd_4 状中结构__ 3 具体 具体 aad_4 状中结构__ 4 帮助 帮助 vv_0 核心关系__ 5 他 他 rr_4 兼语__ 6 确定 确定 vv_4 动宾关系__ 7 了 了 uu_6 右附加关系__ 8 把 把 pp_15 状中结构__ 9 画 画 vv_8 介宾关系__ 10 雄鹰 雄鹰 nn_9 动宾关系__ 11 、 、 wp w_12 标点符号__ 12 松鼠 松鼠 nn_10 并列关系__ 13 和 和 cc_14 左附加关系__ 14 麻雀 麻雀 nn_10 并列关系__ 15 作为 作为 vv_6 动宾关系__ 16 主攻 主攻 vvn_17 定中关系__ 17 目标 目标 nn_15 动宾关系__ 18 。 。 wp w_4 标点符号__ ``` 该输出详细展示了句子的结构,包括各个词汇之间的依存关系,有助于进一步理解句子含义及其构成。 ##### 3. 编写Python代码实现 根据教材第27页的例子,可以编写Python代码来实现上述功能。例如,使用HanLP库进行分词和句法分析: ```python from com.hankcs.hanlp import * # 加载HanLP模型 HanLP.Config.ShowTermNature = False segment = JClass('com.hankcs.hanlp.seg.common.OFFSET') parser = JClass('com.hankcs.hanlp.dependency.nnparser.NeuralNetworkDependencyParser') # 分词 sentence = "徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。" term_list = segment.seg(sentence) print("分词结果:", term_list) # 句法分析 dependency = parser.compute(term_list) print("句法分析结果:", dependency) ``` 通过上述实验操作,学生不仅可以熟悉汉语言处理的基本概念和技术,还能实际操作相关工具,提升编程能力,为后续更深层次的学习打下坚实的基础。
2025-03-29 00:26:13 232KB 自然语言处理
1
小样本学习-专利分类-自然语言处理_FewShotClassification
2025-03-28 23:59:50 17.27MB
1
概述: 该资源介绍了一个创新性的电影问答系统,其核心基于知识图谱技术。知识图谱是一种将信息结构化并以图形方式表示的技术,它为电影领域的问答提供了更智能、准确的解决方案。这个系统允许用户通过自然语言提出问题,系统能够从庞大的电影知识图谱中提取相关信息并给予详尽的回答。 内容: 知识图谱技术简介: 描述: 对知识图谱的基本概念进行介绍,说明它如何在电影领域中发挥作用。 资源: 提供有关知识图谱技术的详细解释,并指向相关的学术资源或文献。 电影知识图谱构建: 描述: 详细说明构建电影知识图谱的方法,包括数据收集、实体识别、关系建模等步骤。 资源: 提供构建电影知识图谱所用工具、技术和数据源的信息。 自然语言处理(NLP)与问答系统: 描述: 解释系统如何利用自然语言处理技术理解用户提出的问题,并从知识图谱中检索相关信息。 资源: 提供有关NLP和问答系统的基本原理,并指向相关资源以深入了解。 系统工作流程: 描述: 介绍系统的工作流程,从用户提问到知识图谱检索和最终回答的过程。 资源: 提供系统工作流程图和示例,以便读者更好地理解系统的运作方式。 性能评估和优化:
2025-03-23 22:28:04 132KB 自然语言处理 知识图谱
1
内容概要:本文介绍了名为‘DeepSeek+DeepResearch’的研发平台及其应用,涵盖从数据挖掘、数据分析到数据可视化等一系列任务。它能帮助用户实现高效精确的任务执行,例如爬虫数据采集、文件数据读取及文本集成等工作,特别是涉及复杂任务,如长思维链分析与多任务处理。文章还详细介绍了DeepSeek R1和Claude 3.5 sonnet等几个主要模型的特点,对比了这些模型在不同任务中的表现,讨论了它们各自的优势和劣势,包括性能平衡、多模态支持、可解释性以及轻量化设计等方面的特色。此外,文章探讨了这些模型的应用前景及未来发展方向,如在教育、金融、医疗、广告和智能客服等多个领域提供创新的支持和服务。 适合人群:从事数据处理的专业人士,科研工作者和有兴趣深入了解AI在文本、数据分析与应用领域的开发者与研究人员。 使用场景及目标:该系统适用于大数据量、高精度处理的任务,特别是在需要多模态处理和支持多种语言的情况下;此外,在涉及复杂逻辑推理或需要解释性的场合尤为合适。具体的应用目标包括但不限于提升数据采集的速度和准确度,优化数据分析流程并提高其结果的价值,以及改进现有系统的用户体验和功能丰富度等。 其他说明:尽管这些AI工具有着诸多优点,但也面临着诸如语言混杂问题以及长文本处理等方面的挑战。为了更好地利用此类技术,用户应当结合具体的业务需求来考虑使用哪种工具更为适宜,并密切关注该领域的未来发展动态,及时采纳最新的科技成果以维持竞争力。
2025-02-23 15:30:51 8.31MB 自然语言处理 数据挖掘 数据可视化
1
内容概要:本文详细介绍了清华大学双聘教授张家铖关于DeepSeek及其AI幻觉的研究成果,涵盖了AI幻觉的概念与成因,如何评估和缓解幻觉的风险,以及幻觉的潜在创造性应用。具体而言,文中首先解释了什么是AI幻觉,探讨了它为何发生,特别是模型训练中的数据偏差、泛化困难等问题。其次,对DeepSeek和类似模型在多种情境下进行幻觉评测,并给出了详细的幻觉率统计数据。接着讨论了幻觉在金融、医疗等领域造成的问题,并提出了减轻这些负面影响的方法,比如联网搜索、双AI验证、提示词工程等。最后强调了幻觉在艺术创造和技术突破方面的积极意义。 适合人群:对于希望深入了解人工智能技术尤其是大型语言模型行为特征的专业人士来说是非常有价值的参考资料;对于关注AI发展和社会影响的一般公众也能提供重要见解。 使用场景及目标:该研究不仅揭示了现有AI系统的潜在风险,还鼓励开发者采用更好的方法来评估和改进他们的系统;同时也展示了幻觉在创造性领域的潜力,如艺术创作和技术革新等方面的应用前景。 其他说明:文档中提供了若干具体的应用案例,比如金融机构利用DeepSeek提升服务质量的例子,还有关于如何有效防范AI产生幻觉的实践经验分享。此外,还提及了一些新兴的应用趋势,例如通过幻觉促进科学研究的新模式。
2025-02-23 15:28:48 3.57MB 人工智能 自然语言处理 机器学习
1
内容概要:本文详细介绍了一款名为DeepSeek的人工智能工具及其广泛应用场景,旨在帮助普通大众在日常工作、学习和生活中更好地利用AI来提高效率和解决问题。DeepSeek是一款由中国科技公司推出的通用人工智能平台,尤其擅长推理分析、多语言理解和多模态处理等高级功能。它不仅能帮助企业快速生成所需文档,还能为用户提供从学习辅导、职业规划到人际关系等方方面面的支持,通过强大的语义理解和对话系统让用户轻松应对各种挑战。文中列举了多个实际应用场景,展示了DeepSeek是如何帮助人们解决具体困难,比如快速编写长篇文章、处理职场沟通障碍或是应急处置突发的家庭危机。 适合人群:广大上班族、学生群体及其他希望通过先进技术改善自身生活质量的所有人士,尤其是那些处于快节奏生活方式之下,渴望获得更多时间管理灵活性和个人成长机会的朋友。 使用场景及目标:①帮助用户在极短的时间内起草或优化重要文档;②助力新入职员工快速掌握所在行业和技术领域的关键信息,加速岗位融入;③协助客服团队迅速回应客户咨询,提高服务质量;④指导用户解决学业上遇到的知识盲点或程序编写障碍;⑤支援个人解决生活中遇到的实际困境,包括但不限于社交互动难题以及应急事件的处置。 其他说明:文章中强调了提示词策略的重要性,对于充分发挥DeepSeek的作用至关重要。有效的提示可以激发模型深层次的推理能力,从而生成更为精准的答案。此外,面对来自AI的结果,还需要使用者拥有良好的评判能力和逻辑思维能力,这样才能选出最适合实际情况的最佳方案,真正做到让技术服务于人。同时,随着DeepSeek不断更新迭代,更多实用功能将会解锁,持续为人们的日常带来惊喜变革。
2025-02-21 21:00:10 4.84MB 人工智能 自然语言处理 机器学习
1
2022秋 哈工大计算学部人工智能专业《自然语言处理》专业课 课件合集 授课教师:哈工大语言技术研究中心 杨沐昀、孙承杰 关键词:计算学部 自然语言处理 实验 ymy “元旦事变” 想看目录的请在CSDN搜索:“2022秋 哈工大《自然语言处理》课件合集总览”(2023年12月发布)
2025-01-16 11:25:08 89.53MB 自然语言处理 教学课件
1
语音识别以语音为研究对象,它是语音信号处理的一个重要研究发现,是模型识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域。甚至还涉及到人的体态语言,最终目标是实现人与机器进行自然语言通信。 该资源使用TensorFlow2.x框架,详细的讲解了如何实现自动语音识别。 由于数据集THCHS-30过大,可自行去以下地址下载:http://www.openslr.org/18/,也可通过在博主的网盘分享下载:链接:https://pan.baidu.com/s/1tItruoTSgku8F_m2f-Gusg?pwd=duzh 提取码:duzh
2024-12-02 16:22:11 57.69MB 自然语言处理 语音识别 深度学习
1
【内容摘要】这套自然语言处理(NLP)资源基于PaddlePaddle深度学习框架,专注于智能政务问答系统的搭建与实现。内容包含了详细的PPT课件讲解,以及从模型构建到系统部署的完整代码实现,涵盖了自然语言理解、对话系统设计、知识图谱应用等相关技术。 【适用人群】主要是对NLP和深度学习有浓厚兴趣的技术研发人员,以及从事政务服务、智能客服系统建设的行业从业者;同时也适用于高校师生作为教学与实践参考。 【适用场景】主要包括政务服务平台智能化升级、企业智能客服系统构建等。 【资源目标】是通过理论结合实践的方式,帮助用户掌握如何运用PaddlePaddle构建高效的智能政务问答系统,提升政务服务效率与用户体验。
2024-10-14 23:42:05 355.75MB 自然语言处理 paddle
1
【内容摘要】这套NLP资源着重于词向量表示与语言模型的相关理论与实践,内含详尽的PPT教学课件和实战代码示例。 【适用人群】主要为对自然语言处理技术感兴趣的学生、教师、研究者以及相关领域的开发者,尤其适合初学者深化理解和进阶者提升技能。 【适用场景】包括但不限于机器翻译、情感分析、语义搜索、聊天机器人开发等领域。资源的目标是帮助用户掌握词向量的构建原理(如Word2Vec、GloVe等),理解并应用语言模型(如n-gram、RNN、Transformer等)进行文本生成与预测任务,从而全面提升其在NLP项目中的问题解决能力和技术研发实力。
2024-09-29 10:09:39 2.95MB 自然语言处理 语言模型
1