对角CARIMA模型多变量广义预测控制介绍了多变量广义预测控制算法,基于受控自回归滑动平均模型(CARIMA),希望对大家有用
1
论文《基于小波分析的ARIMA模型的股价预测——以中信银行的收盘价为例》中滑动ARIMA模型代码与结果
2022-11-04 15:05:56 953KB 自回归滑动平均模型 股价预测
1
为了实现更加稳健和精准的门诊量预测,构建了一种基于SARIMA-LSTM的门诊量预测模型。该方法首先使用SARIMA模型对门诊量进行单指标建模,提取门诊量指标蕴含的周期、趋势等信息,然后构建了以节日天数、法定上班天数、平均最高气温等多个相关指标为输入的多对一LSTM模型,对SARIMA模型残差进行进一步学习,实现残差与多个变量间的非线性关系抽取。实证结果表明,构建SARIMA-LSTM混合模型相较5种主流预测方法具有更高的一步预测精度,具有较好的实际应用价值。
1
研究网络流量预测精度问题, 网络流量受多种因素的综合影响, 其变化具有周期性、非线性和随机性等特点, 将ARIMA模型和SVM模型相结合建立一种网络流量预测模型。采用ARIMA预测网络流量周期性和线性变化趋势; 然后采用SVM对网络流量非线性和随机性趋势进行拟合; 最后将两者结果再次输入SVM进行融合, 得到网络流量最终预测结果。采用具体网络流量数据对模型性能进行测试, 仿真结果表明, ARIMA-SVM提高了网络流量预测精度, 降低了预测误差, 能更全面刻画网络流量变化规律。
1
针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均( ARIMA) 和小波神经.网络( WNN) 组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网.络模型强大的非线性关系映射能力,把交通流时间序列的数据结构分解为线性自相关结构和非线性结构两部分。采用差.分自回归滑动平均模型预测交通流序列的线性部分,用小波神经网络模型预测其非线性残差部分,最终合成为整个交通.流序列的预测结果。计算机仿真结果表明: 组合模型的预测精度高于ARIMA 模型和WNN 模型各自单独使用时的预测精.度,组合模型可以提高交通流预测精度,是交通流预测的有效方法。
1
本程序用于降水、径流、气温等的突变检验分析,通过读取Excel数据,自主控制子序列步长。滑动t检验的基本思想是:把一气候序列中两段子序列均值有无显著差异看为来自两个总体均值有无显著差异的问题来检验。如果两段子序列的均值差异超过了一定的显著性水平,可以认为均值发生了质变,有突变发生
2021-04-06 08:56:52 8KB matlab 自回归滑动平均模型
1
ambari\hdp
2021-03-16 12:02:30 6.79MB ambari 自回归滑动平均模型
1
ARMA可调试运行
2019-12-21 21:17:47 2KB MATLAB
1
ARIMA模型预测风电功率含程序代码,其中含有模型的建立基本原理及建立过程
2019-12-21 20:10:52 322KB ARIMA
1
可以用来做时间序列分析哦,包括模式判别,模型检验,大家共同学习啊
1