针对全卷积神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷积残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷积和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷积神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
基于扩张神经网络(Divolved Convolutions)训练好的医疗领域的命名实体识别工具,这里主要引用模型源码,以及云部署方式供大家交流学习。 环境 阿里云服务器:Ubuntu 16.04 Python版本:3.6 Tensorflow:1.5 第一步:来一个Flask实例,并跑起来: 使用的是Pycharm创建自带的Flask项目,xxx.py from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello World!' if __name__ == '__main__': app.run() 执行python xxx.py就可以运行在浏览器中测试若直接在dos窗口中:输入命令也可测试。 第二部:服务器配置 服务器python版本为3.x 安装pi
2021-10-23 09:53:59 4.12MB Python
1
本文主要是对在线问诊中产生的医疗文本进行命名实体识别的研究.使用在线医疗问答网站的数据,采用{B,I,O}标注体系构建数据集,抽取疾病、治疗、检查和症状四个医疗实体.以BiLSTM-CRF为基准模型,提出两种深度学习模型IndRNN-CRF和IDCNN-BiLSTM-CRF,并在自构建数据集上验证模型的有效性.将新提出的两种模型与基准模型通过实验对比得出:模型IDCNN-BiLSTM-CRF的F1值0.8116,超过了BiLSTM-CRF的F1值0.8009,IDCNN-BiLSTM-CRF整体性能好于BiLSTM-CRF模型;模型IndRNN-CRF的精确率0.8427,但该模型在召回率上低于基准模型BiLSTM-CRF.
1
今天小编就为大家分享一篇Pytorch中膨胀卷积的用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-06-16 17:05:01 156KB Pytorch 膨胀 卷积
1