内容概要:本文详细介绍了三相静止无功发生器(SVG)的仿真设计,涵盖其工作原理、控制策略和无功补偿机制。文中附带了一份31页的Word报告,帮助读者快速入门SVG的学习。报告详细解释了电压定向的双闭环控制策略,即直流电压外环和电流内环控制,并比较了正弦脉宽调制(SPWM)与空间矢量脉宽调制(SVPWM)两种调制方法对SVG交流侧输出电流谐波含量的影响。此外,文章还探讨了SVG通过调节交流侧输出电压和电流参数来实现动态无功补偿的方法,强调了仿真设计在减少实际设备调试难度和时间方面的重要作用。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是关注无功补偿技术和SVG应用的研究人员和工程师。 使用场景及目标:适用于希望深入了解SVG工作原理和仿真设计的技术人员,旨在提升他们对SVG控制策略的理解,掌握无功补偿的实际操作技巧,以及评估不同调制方式的效果。 其他说明:通过仿真设计可以有效模拟真实电力系统的运行环境,提前发现并解决潜在问题,提高电网供电质量和稳定性。
2025-10-23 15:32:09 1.12MB SVG 脉宽调制
1
空间电压矢量脉宽调制技术SVPWM详解:五段式与七段式工作原理、实现过程及模块化搭建指南,空间电压矢量脉宽调制技术SVPWM:五段式与七段式工作原理、实现过程详解及模块化搭建、C集成实现指南,空间电压矢量脉宽调制技术SVPWM 五段式、七段式SVPWM工作原理和实现过程辅导。 有模块化搭建、代码实现和C集成的SVPWM模块模型实现。 提供对应的参考文献; ,空间电压矢量脉宽调制技术SVPWM; 五段式SVPWM工作原理; 七段式SVPWM工作原理; SVPWM实现过程; 模块化搭建SVPWM模块模型; 代码实现SVPWM模块模型; C集成SVPWM模块模型; 参考文献。,空间电压矢量脉宽调制技术详解:五七段式SVPWM工作原理及实现
2025-10-22 19:37:16 1.42MB
1
1 引言   在半导体电阻式气体传感器中,气敏芯体对温度非常敏感,在整个工作环境温度波动范围内温度噪声通常会完全掩盖气体浓度输出的有效信号。另外气体传感器大多利用化学反应性质测量气体浓度,化学性质通常与温度有关,为了获得响应特性,敏感芯体通常需要工作在特定温度,因而为气敏芯体提供恒定的工作温度环境显得非常有意义。   在电路设计理论里实现恒温控制的方式有很多,传感器的特殊应用决定了低功耗、高精度、高可靠性的分立模拟电路实现方案非常适合。PID脉宽控制恒温模拟电路具有非常好的控温精度,同时元器件简单且具有可靠的失效率参数,风险可控,非常适合航天产品的设计要求。   2 电路框图   传感
2025-09-29 13:57:10 570KB
1
TL494是一种由美国德克萨斯州仪器公司(TEXAS INSTRUMENT)生产的脉宽调制(PWM)控制电路,它被广泛应用于开关电源控制器中,以提高电源系统的稳定性和效率。在密封铅酸电池充电器的设计中,TL494被用来实现恒流恒压的充电控制,这对于延长电池的使用寿命至关重要。 TL494芯片内部结构包括一个5V基准电压源、振荡器、两个误差放大器、比较器、触发器、输出控制电路以及输出晶体管和空载时间电路。这些组成部分协同工作,使得TL494能够通过脉冲宽度调制(PWM)的方式精确控制输出电压和电流,从而控制电池的充电状态。 在使用TL494时,需要对外接的振荡电阻和振荡电容进行配置,以确定PWM信号的频率。芯片的管脚配置包括多个端口,如误差放大器输入端、相位校正端、间歇期调整端、振荡器端、接地端、输出晶体管端、电源端和输出控制端等,它们各自承担着不同的功能。例如,输出控制端可用于选择不同的输出模式,而基准电压输出端则为芯片内部或外部的电路提供稳定的5V参考电压。 脉冲调宽调压的原理是基于TL494内部振荡器产生的锯齿形振荡波,这些振荡波被送入PWM比较器,与外部的调宽电压进行比较,从而输出具有特定宽度的脉冲波。该脉冲波的宽度随着调宽电压的变化而改变,进而调节开关管的导通时间(TON),实现输出电压的稳定。 在密封铅酸电池充电器的设计中,充电器工作原理是首先通过大电流恒流充电,随着电池电压的升高,充电器转为恒压充电模式,充电电流逐渐减小。在电池充满后,充电器进入浮充状态以抵消电池自放电的影响。充电过程的每个阶段都对电池的寿命和性能有重要影响。为了确保安全和效率,充电过程通常被设计为包含快充、慢充和涓流充电三个阶段。例如,在12V铅酸电池的充电过程中,当电池电压达到13.5V至13.8V时,充电器会切换到恒压充电状态,以降低充电电流。当电流降至250mA左右时,电池已达到额定容量的100%,此时充电器转为浮充状态,当电池电压下降到13V时,再开始新一轮的大电流充电。 密封铅酸电池由于成本低、容量大,在很多领域中得到广泛的应用。然而,不当的充电方法会导致电池寿命的严重缩短。因此,引入TL494芯片设计的恒流恒压充电器,不仅提高了充电效率,而且通过精确控制充电过程中的电流和电压,延长了电池的使用寿命。 TL494芯片在密封铅酸电池充电器中的应用,展示了其在电源管理方面的重要作用。通过精确控制脉冲宽度,该芯片能够在不同的充电阶段提供适当的电流和电压,从而确保电池在安全和效率之间达到最佳平衡。
1
内容概要:本文详细介绍了如何利用MATLAB及其Simulink工具箱设计和仿真的双闭环可逆直流脉宽调速系统。首先阐述了系统的基本组成,即电流环和转速环的设计原理,以及它们之间的协同工作关系。接着深入探讨了各个关键组件的具体实现方法,包括PWM调制、H桥驱动模块配置、PI控制器参数计算、过压过流保护机制等。同时提供了大量实用的MATLAB代码片段用于辅助理解和实际操作。并通过一系列实验验证了所设计方案的有效性和优越性能。 适合人群:从事电力电子、自动化控制领域的工程师和技术人员,尤其是那些希望深入了解直流电机调速系统内部运作机制的人群。 使用场景及目标:适用于需要精确控制电机转速的应用场合,如工业机器人、数控机床等领域。主要目的是提高系统的稳定性和响应速度,减少超调现象的发生,确保设备的安全可靠运行。 其他说明:文中不仅涵盖了理论知识讲解,还有丰富的实践经验分享,对于初学者来说是非常宝贵的学习资料。此外,作者还强调了一些容易忽视但在实际应用中至关重要的细节问题,比如参数选择不当可能导致的问题及其解决方案。
2025-06-26 14:27:52 181KB
1
STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计。本项目是关于使用STM32进行输入捕获测量脉宽的实践,通过Proteus仿真工具进行验证。输入捕获是STM32的一个重要功能,它允许我们精确地测量输入信号的上升沿或下降沿到定时器计数器翻转的时间间隔,从而计算出脉冲宽度。 我们需要了解STM32中的输入捕获工作原理。在STM32的定时器中,有专门的输入捕获通道,当外部信号触发事件(如上升沿或下降沿)时,定时器的寄存器会记录当前的计数值。通过比较两次捕获的计数值差,我们可以得到脉冲宽度。在STM32的HAL库或LL库中,提供了相应的API函数来配置输入捕获和处理捕获事件。 具体步骤如下: 1. **配置定时器**:选择合适的定时器(如TIM2、TIM3等),并设置为输入捕获模式。需要设置定时器的工作模式(向上计数、向下计数或中心对齐),预分频器值以确定时基,以及输入捕获通道(例如,通道1用于捕获上升沿,通道2用于捕获下降沿)。 2. **配置输入滤波器**:为了去除噪声,可以设置输入滤波器,定义输入信号的边缘检测延迟时间。 3. **设置中断**:注册输入捕获中断回调函数,当捕获事件发生时,该函数会被调用,用于处理脉宽测量。 4. **启动定时器**:开启定时器,使其开始计数。 5. **处理中断**:在中断服务程序中,读取捕获的计数值,并计算脉宽。 Proteus是一款强大的电子电路仿真软件,可以模拟硬件电路行为。在本项目中,Proteus被用来搭建STM32与外部脉冲信号源的虚拟电路,进行输入捕获功能的验证。用户可以通过Proteus界面观察STM32捕获到的脉宽值,验证代码的正确性。 在使用Proteus仿真时,需要注意以下几点: 1. **添加元件**:在Proteus中添加STM32微控制器和外部脉冲信号源(如555定时器或其他脉冲发生器)。 2. **连线**:正确连接STM32的输入捕获引脚与脉冲信号源的输出引脚。 3. **编程**:将STM32的固件(.hex文件)加载到Proteus中,使能仿真。 4. **运行与观察**:启动仿真,通过Proteus的示波器或者自定义的数据显示窗口观察脉宽测量结果。 通过这个项目,学习者不仅可以掌握STM32输入捕获的配置和使用,还能熟悉Proteus仿真的操作,增强实践动手能力。全套资料中可能包含源码、电路图、原理说明、教程文档等,帮助初学者更好地理解和应用这些知识点。在实际工程中,这种技术常用于电机控制、传感器信号处理、通信协议解析等领域。
2025-05-23 22:09:50 8.64MB
1
基于VSG技术的双机并联虚拟同步发电机系统研究与应用:采用Plecs平台进行电压电流双闭环控制与SVPWM空间矢量脉宽调制,模拟微电网多台逆变器并联工况,实现双机无功功率均分和有功功率按比例分配。基本工况及负载变化下的性能分析与验证。,VSG 同步发电机双机并联 Plecs 采用电压电流双闭环控制 svpwm 空间矢量脉宽调制 模拟微电网多台逆变器并联工况 基本工况: 本地负荷 240kw 10kvar 2-4s 投入 60kw 负荷 负载电压 311V 可实现双机无功功率均分, 有功功率按比例分配 可提供参考文献与简单 谢谢理解 部分波形如下: ,VSG; 虚拟同步发电机双机并联; Plecs仿真; 电压电流双闭环控制; svpwm; 空间矢量脉宽调制; 微电网逆变器并联; 基本工况; 负荷分配; 功率分配; 参考文献。,"VSG双机并联模拟微电网的功率分配与控制策略研究"
2025-05-12 13:53:17 1.04MB 数据结构
1
PWM产生器、整流桥式电路和电流转速调节器非库元件!!自己利用原理搭建!有助于理解PWM产生原理,桥式电路整流原理和PI调节原理!
2024-06-07 08:41:35 42KB PWM调速 桥式整流电路 直流电机
1
AT89C51单片机作为控制核心,将增量式PID算法和PWM脉宽调制技术相结合,通过光藕控制双向晶闸管 导通角的大小实现热水器的恒温控制。解决了传统的电热水器用冷热水闸门调节温度出现的温度不稳定,不易调节的缺点。
2024-05-16 16:05:26 259KB PID算法 脉宽调制 电热水器
1
绍了一个用于UPS和可再生能源的小功率DC/AC电源的设计。该电源由高频DC/DC环节和SPWM DC/AC环节组成。由UC3846控制的DC/DC环节采用具有变压器的推挽电路,实现低压直流到高压直流的变换并克服变压器的偏磁。基于MOTOROLA的DSP芯片56F80l实现DC/AC环节的SPWM信号发生、输出交流电压调节和整个电源的监测和保护。该电源具有体积小,逆变效率高,波形质量好的优点。
1