基于传统图像分割方法的Matlab肺结节提取系统:从CT图像分割肺结节并评估分割效果,附GUI人机界面版本及主函介绍,Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。 ,核心关键词: Matlab; 肺结节分割; 肺结节提取; 源程序; GUI人机界面; 传统图像分割; 非深度学习方法; LIDC-IDRI数据集; 读取图像; 图像增强; Gam
2025-05-16 22:21:33 312KB scss
1
LUNA16数据集,已经预处理好了,现在是二维图像切片,坐标是YOLO格式,可用于小目标检测,相关资源网上已经开源但是很多假货,我预处理后图片像素一样,坐标位置准确,可放心使用,前期下载时我也栽了很多坑,所以不想坑人,不昧良心,如果资源有问题及时联系我,感谢各位! Luna2016肺结节数据集(已预处理适用于YOLO)是一个专门针对肺部小结节进行识别和定位的数据集,它源自LUNA16数据集,即肺部结节分析挑战(Lung Nodule Analysis 2016)的数据集。这个挑战主要关注的是如何高效准确地在肺部CT扫描图像中检测出小结节,这对于早期诊断肺癌具有重要的意义。数据集的预处理工作是将原始的CT扫描图像转化为二维图像切片,并且标注了每个肺结节的YOLO格式坐标。YOLO,即You Only Look Once,是一种快速且准确的目标检测算法,它能够实时地从图像中检测出多个对象。因此,这个数据集非常适合用于训练和测试基于YOLO算法的肺结节检测模型。 由于LUNA16数据集的原始资料在网上容易遇到各种版本,包括一些错误或不完整的数据,导致研究者在寻找合适的数据资源时可能遇到难题。为了解决这一问题,发布者已经对LUNA16数据集进行了预处理,并且对图像像素和坐标进行了校准,确保了数据的质量和准确性。这样,使用者在使用这个数据集时就可以更加安心,不必担心数据错误对研究和开发工作造成的干扰。发布者还特别强调,如果在使用这个数据集过程中遇到任何问题,可以及时与他联系,表现出了一种负责任的态度和对研究工作的支持。 此外,Luna2016肺结节数据集(已预处理适用于YOLO)的标签包括“Luna16”,“YOLO”,“数据集”和“肺结节”,这些都是与人工智能和计算机视觉领域相关的关键词。这也意味着该数据集旨在服务于那些研究医学影像分析、计算机视觉及深度学习技术的开发者和研究人员。利用这个数据集,他们可以更好地训练和验证他们的算法,尤其是针对肺结节检测的小目标检测能力。 在实际应用中,这个数据集能够帮助开发者和研究人员构建更加精确的肺结节检测模型,这些模型可以用于医疗图像分析工具中,辅助放射科医生和其他医学专业人士进行疾病诊断。由于肺结节通常体积较小,且在CT图像中可能不易被肉眼识别,因此,能够准确快速地检测出这些结节对于早期发现和治疗肺部疾病至关重要。随着人工智能技术的不断进步,利用机器学习和深度学习技术进行肺结节检测已经展现出巨大的潜力和应用前景。 Luna2016肺结节数据集(已预处理适用于YOLO)提供了一个高质量、经过严格校准的数据资源,它不仅能够推动人工智能在医学影像分析领域的应用发展,同时也为相关领域的研究者提供了一个可靠的工作平台,帮助他们在肺结节检测这个重要课题上取得更深入的研究成果。通过这个数据集的使用,医学影像分析将更加精确和高效,有望在未来的临床应用中发挥出重要作用。
2025-04-10 16:56:56 107.06MB Luna16 YOLO 数据集 人工智能
1
YOLOv8检测LUNA16肺结节实战(一):数据预处理代码
2024-05-12 17:24:05 13KB
1
今夕何夕 【医学影像分析】3D-CT影像的肺结节检测(LUNA16数据集).zip
2024-02-23 11:55:03 9.6MB 数据集
1
肺实质提取后转为PASCAL VOC格式,共1186张结节图片和标签
2024-01-01 12:49:11 186.41MB 数据集 LUNA16
1
用LUNA16数据集每张CT图保存结节上下三张保存为jpg格式图片,根据Annotations生成xml标注文件,另外在肺实质图像上画出结节所在位置用于预测时对比
2023-04-14 19:17:10 127.85MB 数据集 肺结节 Yolo LUNA16
1
用于LUNA16数据集肺结节的预处理,将mhd文件转换为npy文件,便于送入模型训练,内含一个简单的unet模型,可以用来训练。
2023-04-14 16:54:24 9KB 数据集
1
这是一个python的肺结节分割代码,是我最近修改过的代码,希望给初学者提供参考,为大家提供思路。欢迎大家下载参考。希望可以给大家帮助
2023-02-14 16:40:13 1.71MB python 肺结节 分割
1
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。
2022-12-06 13:24:54 2.76MB 图像处理 计算机辅 肺结节 三维卷积
1
卷 积 神 经 网 络 的 语 义 分 割 模 型 未 有 效 利 用 特 征 权 重 信 息 ,导 致 在 医 学 图 像 复 杂 场 景 中 分 割 边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的 U-Net++网络,并将其 应 用 于 电 子 计 算 机 断 层 扫 描 影 像 肺 结 节 分 割 。 该 模 型 首 先 在 卷 积 神 经 网 络 中 提 取 出 不 同 深 度 特 征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在 LIDC 数据集和重庆大学附属肿瘤医院肺部 电 子 计 算 机 断 层 扫 描 数 据 集 上 进 行 了 分 割 实 验 ,所 提 方 法 的 交 叉 比 在 两 个 数 据 集 上 分 别 可 达 到80.59% 和 87.40%、骰子系数分别可达到 88.23% 和 90.83%。相比 U-Net 和 U-Net++方法,该算法有效提升了图像分割性能。本文方法能在肿瘤微小细节上实现精确分割 ,较好地解决了肺结节
2022-05-27 21:05:47 1.67MB U-Net
1