内容概要:详细演示了使用 Python 中的 LSTM 和 XGBoost 结合来创建股票价格预测模型的方法。该示例介绍了从数据提取到模型优化全过程的操作,并最终通过图形比较预测值和真实值,展示模型的有效性,有助于提高金融投资决策水平和风险管理能力。本项目的亮点之一就是它融合 LSTM 捕获时间关系的强大能力和 XGBoost 在复杂特征之间的建模优势。 适用人群:有Python编程经验的人士以及金融市场投资者和技术分析师。 使用场景及目标:应用于金融市场的投资策略规划,特别是针对需要长期监控、短期交易决策的股票,用于辅助进行市场走势判断和交易决策支持。 额外信息:此外还包括对未来工作的改进建议:加入更多金融技术指标的考量以及使用更高级机器学习模型的可能性。
2024-10-23 13:27:07 41KB Python LSTM XGBoost 股票价格预测
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
目标:根据历史数据,预测当天股票最高价 模块导入 import pandas as pd import matplotlib.pyplot as plt import datetime import torch import torch.nn as nn import numpy as np from torch.utils.data import Dataset, DataLoader 数据读取 原始数据获取 预测股票价格的简单小程序,LSTM 实现,基于 Pytorch。数据预处理时,将训练数据和验证数据进行了统一处理,发生了数据泄露,因此仅供娱乐,并不实用。
2023-12-24 15:41:12 623KB Pytorch
1
基于Qt实现的股票分析预测软件,实现外排序功能,程序加载数据内存限制不超过30MB算法逻辑,创建索引,加快数据获取,根据股票的年月和代码进行k线图展示,热力图展示,相关系数计算,最后价格预测和股票价格曲线展示。对股票数据进行多个处理操作,包括外排序、创建索引、统计分析、价格预测和可视化展示。 基于X86架构的英特尔处理器,操作系统为Windows系统,而软件开发工具主要采用的是QTCreator。
2023-06-13 17:53:23 84.54MB qt 软件/插件 金融商贸 C++
1
AI_Stock 可以根据新闻预测股票价格的AI。
2023-05-17 18:17:06 325KB Python
1
资源包含文件:设计报告word+代码 股票价格预测详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122463596?spm=1001.2014.3001.5502
2023-05-16 15:49:51 1.03MB Python 循环神经网络 股票价格 价格预测
文章应用股市中三个具有典型意义的技术指标,RSTKDJ和5日平均线建立了非线性回归预测模型,对股票的价格走势进行了短期预测。所建立的回归模型对预测某些股票的短期价格趋势提供了参考,具有一定的理论价值和实际应用价值。
2023-03-20 13:15:28 2.06MB 自然科学 论文
1
毕业设计之:基于 Python 的股票价格序列相似性分析 完整代码+数据集 摘要:本文主要能够根据用户所提供的股票寻找同行业内与其价格序列相似的股票,并能通过其在历史中的重复性对今后的趋势做预测。使用 Python 及相关库,结合动态时间弯曲(DTW)算法,用折线图的方式形象直观地展现出分析结果。 关键字:Python;股票价格序列;相似性;时间动态弯曲法;DTW
2023-01-28 15:51:08 1.67MB 股票预测 python 相似性
1
数据集包含道琼斯工业平均指数 (DJIA) 指数值的样本,以及今天形成 DJIA 的公司的股票价格。 djia.csv stock_prices.csv
2022-12-30 17:58:26 64KB 数据集
1