在本项目中,我们将深入探讨如何使用MATLAB来构建一个基于卷积神经网络(CNN)的语音识别系统。MATLAB作为一个强大的数值计算和数据分析平台,提供了丰富的工具箱,包括深度学习工具箱,使得我们能够在其中方便地实现复杂的神经网络模型。 我们需要理解语音识别的基本原理。语音识别是将人类语言转化为机器可理解的形式的过程。在现代技术中,这通常涉及到特征提取、声学建模和语言模型等步骤。特征提取通常包括MFCC(梅尔频率倒谱系数)、PLP(感知线性预测)等方法,这些方法能够捕捉语音信号中的关键信息。声学建模则涉及到用统计模型(如HMMs或神经网络)来表示不同声音单元的发音特征。而语言模型则帮助系统理解单词序列的概率。 CNN网络在语音识别中的应用主要体现在声学建模阶段。CNN擅长处理具有局部相关性和时空结构的数据,这与语音信号的特性非常匹配。在MATLAB中,我们可以使用深度学习工具箱创建多层CNN模型,包括卷积层、池化层和全连接层,以捕获语音信号的频域和时域特征。 在设计CNN模型时,需要注意以下几点: 1. 数据预处理:语音数据通常需要进行预处理,如分帧、加窗、去噪、归一化等,以便输入到神经网络中。 2. 特征提取:可以使用MATLAB的音频处理工具箱进行MFCC或其他特征的提取,这些特征作为CNN的输入。 3. 模型架构:根据任务需求,设计合适的CNN结构,包括卷积核大小、数量、步长以及池化层的配置。 4. 训练策略:选择合适的优化器(如Adam、SGD等),设置损失函数(如交叉熵),并决定批大小和训练迭代次数。 5. 验证与评估:使用验证集调整模型参数,并通过测试集评估模型性能。 在压缩包中的“基于MATLAB的语音识别系统”文件中,可能包含了整个项目的源代码、数据集、训练脚本、模型权重等资源。通过分析这些文件,我们可以学习如何将理论知识应用到实际工程中,包括数据加载、模型构建、训练过程以及模型保存和测试。 基于MATLAB的CNN语音识别程序设计是一个涉及音频处理、深度学习和模式识别的综合性项目。它要求开发者具备MATLAB编程能力、理解神经网络工作原理,并能有效地处理和利用语音数据。通过这个项目,不仅可以掌握语音识别的核心技术,还能提升在MATLAB环境下实现深度学习模型的实战技能。
2025-07-21 23:11:04 85.04MB matlab 神经网络 语音识别 网络
1
本文提出了一种使用智能头盔作为井下超低功耗的无线传感器网络节点与语音终端的煤矿安全监测方案,能够实现对矿区瓦斯浓度、温度、湿度实时监测和智能预警,并使用语音通信功能以进一步降低煤矿生产中的安全隐患。
2024-02-28 23:05:25 92KB ZigBee 无线传感器网络 语音通信
1
MFC UDP 双工 源代码 VC++ 可以双工的网络语音电话
2023-03-08 18:14:22 3.63MB MFC UDP VC++
1
基于神经网络的语音情感识别 MATLAB bpnn lvq pnn
2023-02-22 20:37:08 254KB 神经网络 语音情感识别 MATLAB
1
基于卷积神经网络的语音识别声学模型的项目源码.zip基于卷积神经网络的语音识别声学模型的项目源码.zip基于卷积神经网络的语音识别声学模型的项目源码.zip 声学模型介绍 1) DCNN-CTC声学模型介绍 该模型主要是在speech_model-05上进行修改,上述模型主要使用DCNN-CTC构建语音识别声学模型,STcmds 数据集也是仿照该模型进行修改,最后实验结果如上图所示; 2) MCNN-CTC声学模型介绍 该模型主要是在speech_model_10 脚本上进行实验,最终实验结果可在上图2)所示结果,最终MCNN-CTC总体实验结果相较于DCNN-CTC较好; 3) DenseNet-CTC声学模型介绍 上述模型主要是在 DenseNet上进行实验,最终实验在Thchs30数据集结果可以达到接近30%左右的CER,具体实验可以自己付尝试一下; 4) Attention-CTC声学模型 此模型主要在DCNN-CTC基础上,在全连接层进行注意力操作,最终结果相较于其他结果相较于DCNN-CTC可能有提升,具体可以参看speech_model_06脚本;
利用BP神经网络进行语音信号分类,注释很全,本人亲测可以跑通,适合二次开发。
1
深度学习基于全卷积神经网络的语音识别系统源代码。 本项目使用基于卷积神经网络实现。 通过下载复制以后,需要将datalist目录下的文件全部拷贝到dataset目录下,也就是将其跟数据集放在一起。 $ cp -rf datalist/* dataset/ 目前可用的模型有24、25和251 本项目开始训练请执行: $ python3 train_mspeech.py 本项目开始测试请执行: $ python3 test_mspeech.py iters_num (这里的iters_num为迭代的step数,可以在生成的step_dfcnn.txt文件里查看) 测试之前,请确保代码中填写的模型文件路径存在。 ASRT API服务器启动请执行: $ python3 asrserver.py Model 模型 Speech Model 语音模型 CNN + LSTM/GRU + CTC Language Model 语言模型 基于概率图的最大熵隐马尔可夫模型 About Accuracy 关于准确率
人工神经网络的设计与实现 程序代码+实验报告论文
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:基于带动量项的BP神经网络语音识别_BPDLX_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-12 09:06:45 372KB matlab 语音识别 BP神经网络 BPDLX